TOPOLOGICAL EQUIVALENCE OF FLOWS ON HOMOGENEOUS SPACES, AND DIVERGENCE OF ONE-PARAMETER SUBGROUPS OF LIE-GROUPS

被引:10
作者
BENARDETE, D [1 ]
机构
[1] UNIV ILLINOIS,DEPT MATH,URBANA,IL 61801
关键词
D O I
10.2307/2000809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:499 / 527
页数:29
相关论文
共 32 条
[1]  
ANOSOV DV, 1969, P STEKLOV I MATH, V90
[2]   EXPOSITION OF STRUCTURE OF SOLVMANIFOLDS .2. G-INDUCED FLOWS [J].
AUSLANDER, L .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (02) :262-285
[3]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR, V91
[4]  
BOURBAKI N, 1975, ELEMENTS MATH LIE GR, V1
[5]   FLOWS ON HOMOGENEOUS SPACES - A NEW LOOK [J].
BREZIN, J ;
MOORE, CC .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (03) :571-613
[6]  
Cornfeld I. P., 1982, ERGODIC THEORY
[7]   INVARIANT MEASURES, MINIMAL SETS AND A LEMMA OF MARGULIS [J].
DANI, SG .
INVENTIONES MATHEMATICAE, 1979, 51 (03) :239-260
[8]   THE GEOMETRY OF CROSS-SECTIONS TO FLOWS [J].
FRIED, D .
TOPOLOGY, 1982, 21 (04) :353-371
[9]  
GORBATSEVICH VV, 1975, MOSCOW MATH B, V30, P98
[10]  
GROMOV M, 3 REMARKS GEOMETRIC