MEDIANS AND MAJORITIES IN SEMIMODULAR LATTICES

被引:15
作者
LECLERC, B
机构
关键词
D O I
10.1137/0403022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:266 / 276
页数:11
相关论文
共 50 条
[41]   Lower semimodular types of lattices: Frankl's conjecture holds for lower quasi-semimodular lattices [J].
Abe, T ;
Nakano, B .
GRAPHS AND COMBINATORICS, 2000, 16 (01) :1-16
[42]   Lower Semimodular Types of Lattices: Frankl's Conjecture Holds for Lower Quasi-Semimodular Lattices [J].
Tetsuya Abe ;
Bumpei Nakano .
Graphs and Combinatorics, 2000, 16 :1-16
[43]   HOW TO DERIVE FINITE SEMIMODULAR LATTICES FROM DISTRIBUTIVE LATTICES? [J].
Czedli, G. ;
Schmidt, E. T. .
ACTA MATHEMATICA HUNGARICA, 2008, 121 (03) :277-282
[44]   Medians and nullnorms on bounded lattices [J].
Ince, Mehmet Akif ;
Karacal, Funda ;
Mesiar, Radko .
FUZZY SETS AND SYSTEMS, 2016, 289 :74-81
[45]   An extension theorem for planar semimodular lattices [J].
Graetzer, G. ;
Schmidt, E. T. .
PERIODICA MATHEMATICA HUNGARICA, 2014, 69 (01) :32-40
[46]   Quasiplanar Diagrams and Slim Semimodular Lattices [J].
Gábor Czédli .
Order, 2016, 33 :239-262
[47]   An extension theorem for planar semimodular lattices [J].
G. Grätzer ;
E. T. Schmidt .
Periodica Mathematica Hungarica, 2014, 69 :32-40
[48]   Quasiplanar Diagrams and Slim Semimodular Lattices [J].
Czedli, Gabor .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2016, 33 (02) :239-262
[49]   A new property of congruence lattices of slim, planar, semimodular lattices [J].
Czedli, Gabor ;
Gratzer, George .
CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2022, 16 (01) :1-28
[50]   Absolute Retracts for Finite Distributive Lattices and Slim Semimodular Lattices [J].
Gábor Czédli ;
Ali Molkhasi .
Order, 2023, 40 :127-148