ON THE LINEAR COMPLEXITY OF NONUNIFORMLY DECIMATED PN-SEQUENCES

被引:11
作者
GOLIC, JD
ZIVKOVIC, MV
机构
[1] UNIV BELGRADE, FAC ELECT ENGN, YU-11000 BELGRADE, YUGOSLAVIA
[2] UNIV NOVI SAD, FAC TECH SCI, YU-21000 NOVI SAD, YUGOSLAVIA
关键词
Information Theory - Probability;
D O I
10.1109/18.21235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lower bound is derived on the probability that when a PN-sequence of period N = 2n-1 is nonuniformly decimated by means of a sequence whose period divides M, the decimated sequence will have maximum linear complexity nM. It is shown that by choosing M and n appropriately, this probability can be made arbitrarily close to one with nM arbitrarily large.
引用
收藏
页码:1077 / 1079
页数:3
相关论文
共 6 条
[1]  
ALBERT AA, 1956, FUNDAMENTAL CONCEPTS
[2]  
Berlekamp E. R., 1968, ALGEBRAIC CODING THE
[3]   LINEAR EQUIVALENCE OF CERTAIN BRM SHIFT-REGISTER SEQUENCES [J].
CHAMBERS, WG ;
JENNINGS, SM .
ELECTRONICS LETTERS, 1984, 20 (24) :1018-1019
[4]  
Golomb S.W., 1967, SHIFT REGISTER SEQUE
[5]   INTERLACING PROPERTIES OF SHIFT-REGISTER SEQUENCES WITH GENERATOR POLYNOMIALS IRREDUCIBLE OVER GF(P) [J].
SURBOCK, F ;
WEINRICHTER, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :386-389
[6]  
ZIRLER N, 1959, SIAM J, V7, P31