GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR A QUASILINEAR PARABOLIC EQUATION WITH ABSORPTION AND NONLINEAR BOUNDARY CONDITION

被引:1
作者
Ahmed, Iftikhar [1 ]
Mu, Chunlai [1 ]
Zheng, Pan [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
来源
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | 2014年 / 5卷 / 02期
关键词
Global existence; Blow-up; Quasilinear parabolic equation; Nonlinear boundary condition;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the evolution r-Laplacian equation with absorption and nonlinear boundary condition. By using differential inequality techniques, global existence and blow-up criteria of nonnegative solutions are determined. Moreover, upper bound of the blow-up time for the blow-up solution is obtained.
引用
收藏
页码:147 / 153
页数:7
相关论文
共 14 条
[1]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[2]   NONEXISTENCE OF GLOBAL WEAK SOLUTIONS TO SOME PROPERLY AND IMPROPERLY POSED PROBLEMS OF MATHEMATICAL PHYSICS - METHOD OF UNBOUNDED FOURIER COEFFICIENTS [J].
LEVINE, HA .
MATHEMATISCHE ANNALEN, 1975, 214 (03) :205-220
[3]   Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions [J].
Li, Fushan ;
Li, Jinling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) :1005-1014
[4]   Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions [J].
Li, Yuanfei ;
Liu, Yan ;
Lin, Changhao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3815-3823
[5]   Blow-up phenomena for a system of semilinear heat equations with nonlinear boundary flux [J].
Liang, Fei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2189-2198
[6]   Global existence and blow-up for a degenerate reaction-diffusion system with nonlocal sources [J].
Ling, ZhengQiu ;
Wang, ZeJia .
APPLIED MATHEMATICS LETTERS, 2012, 25 (12) :2198-2202
[7]  
Liu DM, 2012, ACTA MATH SCI, V32, P1206
[8]   Blow-up phenomena for some nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3495-3502
[9]   Bounds for blow-up time in nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :438-447
[10]   Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, I [J].
Payne, L. E. ;
Philippin, G. A. ;
Piro, S. Vernier .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06) :999-1007