ADAPTIVE FINITE-DIFFERENCE SOLVER FOR NONLINEAR 2-POINT BOUNDARY PROBLEMS WITH MILD BOUNDARY-LAYERS

被引:150
作者
LENTINI, M
PEREYRA, V
机构
[1] CALTECH,DEPT APPL MATH,PASADENA,CA 91125
[2] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90007
关键词
D O I
10.1137/0714006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:91 / 111
页数:21
相关论文
共 27 条
[1]   FEASIBILITY OF CONTINUATION METHODS FOR NONLINEAR EQUATIONS [J].
AVILA, JH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (01) :102-122
[2]   SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS [J].
BJORCK, A ;
PEREYRA, V .
MATHEMATICS OF COMPUTATION, 1970, 24 (112) :893-&
[3]  
BULIRSCH R, TO BE PUBLISHED
[4]  
BURCHARD G, 1974, J APPL ANALYSIS, V3, P309
[5]   SHOOTING AND PARALLEL SHOOTING METHODS FOR SOLVING FALKNER-SKAN BOUNDARY-LAYER EQUATION [J].
CEBECI, T ;
KELLER, HB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 7 (02) :289-&
[6]  
DANIEL JW, TO BE PUBLISHED
[7]  
DEBOOR C, 1973, LECT NOTES MATH, P12
[8]   MODIFIED NEWTON METHOD FOR SOLUTION OF ILL-CONDITIONED SYSTEMS OF NONLINEAR EQUATIONS WITH APPLICATION TO MULTIPLE SHOOTING [J].
DEUFLHARD, P .
NUMERISCHE MATHEMATIK, 1974, 22 (04) :289-315
[9]  
GOUGH DO, 1974, 4TH P INT C NUM METH
[10]  
HOLT JF, 1968, TR015833070210 AER R