Near/far matching: a study design approach to instrumental variables

被引:0
|
作者
Baiocchi, Mike [1 ]
Small, Dylan S. [2 ,3 ]
Yang, Lin [2 ,4 ]
Polsky, Daniel [4 ]
Groeneveld, Peter W. [2 ,4 ,5 ]
机构
[1] Stanford Univ, Dept Stat, 390 Serra Mall, Stanford, CA 94305 USA
[2] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA 19104 USA
[3] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[4] Univ Penn, Sch Med, Dept Med, Philadelphia, PA 19104 USA
[5] Philadelphia Vet Affairs Med Ctr, Ctr Hlth Equity Res & Promot, Dept Vet Affairs, Philadelphia, PA USA
基金
美国国家科学基金会; 美国医疗保健研究与质量局;
关键词
Instrumental variables; Matching; Study design; Binary outcomes; Comparative effectiveness; Medicare data;
D O I
10.1007/s10742-012-0091-0
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Classic instrumental variable techniques involve the use of structural equation modeling or other forms of parameterized modeling. In this paper we use a nonparametric, matching-based instrumental variable methodology that is based on a study design approach. Similar to propensity score matching, though unlike classic instrumental variable approaches, near/far matching is capable of estimating causal effects when the outcome is not continuous. Unlike propensity score matching, though similar to instrumental variable techniques, near/far matching is also capable of estimating causal effects even when unmeasured covariates produce selection bias. We illustrate near/far matching by using Medicare data to compare the effectiveness of carotid arterial stents with cerebral protection versus carotid endarterectomy for the treatment of carotid stenosis.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条