Near/far matching: a study design approach to instrumental variables

被引:0
|
作者
Baiocchi, Mike [1 ]
Small, Dylan S. [2 ,3 ]
Yang, Lin [2 ,4 ]
Polsky, Daniel [4 ]
Groeneveld, Peter W. [2 ,4 ,5 ]
机构
[1] Stanford Univ, Dept Stat, 390 Serra Mall, Stanford, CA 94305 USA
[2] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA 19104 USA
[3] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[4] Univ Penn, Sch Med, Dept Med, Philadelphia, PA 19104 USA
[5] Philadelphia Vet Affairs Med Ctr, Ctr Hlth Equity Res & Promot, Dept Vet Affairs, Philadelphia, PA USA
基金
美国国家科学基金会; 美国医疗保健研究与质量局;
关键词
Instrumental variables; Matching; Study design; Binary outcomes; Comparative effectiveness; Medicare data;
D O I
10.1007/s10742-012-0091-0
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Classic instrumental variable techniques involve the use of structural equation modeling or other forms of parameterized modeling. In this paper we use a nonparametric, matching-based instrumental variable methodology that is based on a study design approach. Similar to propensity score matching, though unlike classic instrumental variable approaches, near/far matching is capable of estimating causal effects when the outcome is not continuous. Unlike propensity score matching, though similar to instrumental variable techniques, near/far matching is also capable of estimating causal effects even when unmeasured covariates produce selection bias. We illustrate near/far matching by using Medicare data to compare the effectiveness of carotid arterial stents with cerebral protection versus carotid endarterectomy for the treatment of carotid stenosis.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [1] Near/far matching: a study design approach to instrumental variables
    Mike Baiocchi
    Dylan S. Small
    Lin Yang
    Daniel Polsky
    Peter W. Groeneveld
    Health Services and Outcomes Research Methodology, 2012, 12 (4) : 237 - 253
  • [2] THE RISK OF MATERNAL COMPLICATIONS AFTER CESAREAN DELIVERY: NEAR-FAR MATCHING FOR INSTRUMENTAL VARIABLES STUDY DESIGNS WITH LARGE OBSERVATIONAL DATASETS
    Lu, Ruoqi
    Kelz, Rachel
    Lorch, Scott
    Keele, Luke J.
    ANNALS OF APPLIED STATISTICS, 2023, 17 (02): : 1701 - 1721
  • [3] Should instrumental variables be used as matching variables?
    Wooldridge, Jeffrey M.
    RESEARCH IN ECONOMICS, 2016, 70 (02) : 232 - 237
  • [4] FULL MATCHING APPROACH TO INSTRUMENTAL VARIABLES ESTIMATION WITH APPLICATION TO THE EFFECT OF MALARIA ON STUNTING
    Kang, Hyunseung
    Kreuels, Benno
    May, Juergen
    Small, Dylan S.
    ANNALS OF APPLIED STATISTICS, 2016, 10 (01): : 335 - 364
  • [5] Propensity-score matching with instrumental variables
    Ichimura, H
    Taber, C
    AMERICAN ECONOMIC REVIEW, 2001, 91 (02): : 119 - 124
  • [6] Interpretable Almost-Matching-Exactly With Instrumental Variables
    Awan, M. Usaid
    Liu, Yameng
    Morucci, Marco
    Roy, Sudeepa
    Rudin, Cynthia
    Volfovsky, Alexander
    35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 1116 - 1126
  • [7] Income and Effort: An Instrumental Variables Approach
    Chen, Wei
    ATLANTIC ECONOMIC JOURNAL, 2019, 47 (04) : 485 - 497
  • [8] Income and Effort: An Instrumental Variables Approach
    Wei Chen
    Atlantic Economic Journal, 2019, 47 : 485 - 497
  • [9] Errors-in-variables modeling: An instrumental approach
    Stoica, P
    Sorelius, J
    Cedervall, M
    Soderstrom, T
    RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 329 - 340
  • [10] The effect of malaria on stunting: an instrumental variables approach
    Ateba, Francois Freddy
    Doumbia, Seydou
    Ter Kuile, Feiko O.
    Terlouw, Dianne J.
    Lefebvre, Genevieve
    Kariuki, Simon
    Small, Dylan S.
    TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 2021, 115 (09) : 1094 - 1098