PROXIMAL MAPS, PROX MAPS AND COINCIDENCE POINTS

被引:13
作者
BEER, G
PAI, D
机构
[1] CALIF STATE UNIV LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90032
[2] INDIAN INST TECHNOL,DEPT MATH,BOMBAY 400076,INDIA
关键词
D O I
10.1080/01630569008816382
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a continuous seminorm p on a Hausdorff locally convex space X and nonempty subsets A, B of X, let Proximal(B;A) (resp. Prox(A,B)) denote the set of p-proximal points of B in A (resp. the set of ordered pairs of p-proximal points of the pair (A,B)). In this article we identify suitable families A,B of nonempty subsets of X and natural topologies on them with a view to study continuity properties of B → Proximal(B;A) and (A,B) → Prox (A, B). This leads us to obtain a best approximation result and a coincidence theorem for multifunctions defined on non-compact sets. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:429 / 448
页数:20
相关论文
共 18 条
[1]   ON MOSCO CONVERGENCE OF CONVEX-SETS [J].
BEER, G .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 38 (02) :239-253
[2]  
BEER G, IN PRESS J MATH ANAL
[3]  
CASTAING C, 1975, LECTURE NOTES MATH, V580
[4]  
Engelking R, 1977, MATH MONOGRAPHS, V60
[5]   EXTENSIONS OF 2 FIXED POINT THEOREMS OF BROWDER,FE [J].
FAN, K .
MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (03) :234-&
[6]   FIXED-POINTS OF COMPACT MULTIFUNCTIONS [J].
HIMMELBE.CJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 38 (01) :205-&
[7]  
Horvath J., 1966, TOPOLOGICAL VECTOR S, VI
[8]  
Klein K., 1984, THEORY CORRES
[9]   CHARACTERIZATION OF SMOOTH NORMED LINEAR-SPACES [J].
PAI, DV .
JOURNAL OF APPROXIMATION THEORY, 1976, 17 (04) :315-320
[10]  
PAI DV, 1979, OPTIMIZING METHODS S