RECAPITULATING THE VASCULAR MICROENVIRONMENT IN MICROFLUIDIC PLATFORMS

被引:12
作者
Abaci, Hasan E. [1 ,2 ]
Drazer, German [3 ]
Gerecht, Sharon [1 ,2 ]
机构
[1] Johns Hopkins Univ, Johns Hopkins Phys Sci Oncol Ctr, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Inst NanoBioTechnol, Baltimore, MD 21218 USA
[3] Rutgers State Univ, Dept Mech & Aerosp Engn, 98 Brett Rd, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Vascular microenvironment; microfluidics; shear-stress; strain; co-culture; oxygen;
D O I
10.1142/S1793984413400011
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The vasculature is regulated by various chemical and mechanical factors. Reproducing these factors in vitro is crucial for the understanding of the mechanisms underlying vascular diseases and the development of new therapeutics and delivery techniques. Microfluidic technology offers opportunities to precisely control the level, duration and extent of various cues, providing unprecedented capabilities to recapitulate the vascular microenvironment. In the first part of this article, we review existing microfluidic technology that is capable of controlling both chemical and mechanical factors regulating the vascular microenvironment. In particular, we focus on micro-systems developed for controlling key parameters such as oxygen tension, co-culture, shear stress, cyclic stretch and flow patterns. In the second part of this article, we highlight recent advances that resulted from the use of these microfluidic devices for vascular research.
引用
收藏
页数:11
相关论文
共 64 条
[21]   Microchannel platform for the study of endothelial cell shape and function [J].
Gray, BL ;
Lieu, DK ;
Collins, SD ;
Smith, RL ;
Barakat, AI .
BIOMEDICAL MICRODEVICES, 2002, 4 (01) :9-16
[22]   Mechanotransduction in vascular physiology and atherogenesis [J].
Hahn, Cornelia ;
Schwartz, Martin A. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (01) :53-62
[23]   Sickle cell vasoocclusion and rescue in a microfluidic device [J].
Higgins, J. M. ;
Eddington, D. T. ;
Bhatia, S. N. ;
Mahadevan, L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (51) :20496-20500
[24]   EFFECTS OF HUMAN NEUTROPHIL CHEMOTAXIS ACROSS HUMAN-ENDOTHELIAL CELL MONOLAYERS ON THE PERMEABILITY OF THESE MONOLAYERS TO IONS AND MACROMOLECULES [J].
HUANG, AJ ;
FURIE, MB ;
NICHOLSON, SC ;
FISCHBARG, J ;
LIEBOVITCH, LS ;
SILVERSTEIN, SC .
JOURNAL OF CELLULAR PHYSIOLOGY, 1988, 135 (03) :355-366
[25]   Reconstituting Organ-Level Lung Functions on a Chip [J].
Huh, Dongeun ;
Matthews, Benjamin D. ;
Mammoto, Akiko ;
Montoya-Zavala, Martin ;
Hsin, Hong Yuan ;
Ingber, Donald E. .
SCIENCE, 2010, 328 (5986) :1662-1668
[26]   Transport and shear in a microfluidic membrane bilayer device for cell culture [J].
Inamdar, Niraj K. ;
Griffith, Linda G. ;
Borenstein, Jeffrey T. .
BIOMICROFLUIDICS, 2011, 5 (02)
[27]   Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion [J].
Ito, WD ;
Arras, M ;
Scholz, D ;
Winkler, B ;
Htun, P ;
Schaper, W .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1997, 273 (03) :H1255-H1265
[28]   Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes [J].
Kane, Bartholomew J. ;
Zinner, Michael J. ;
Yarmush, Martin L. ;
Toner, Mehmet .
ANALYTICAL CHEMISTRY, 2006, 78 (13) :4291-4298
[29]   Endothelial cell behaviour within a microfluidic mimic of the flow channels of a modular tissue engineered construct [J].
Khan, Omar F. ;
Sefton, Michael V. .
BIOMEDICAL MICRODEVICES, 2011, 13 (01) :69-87
[30]   In vitro angiogenesis assay for the study of cell-encapsulation therapy [J].
Kim, Choong ;
Chung, Seok ;
Liu Yuchun ;
Kim, Min-Cheol ;
Chan, Jerry K. Y. ;
Asada, H. Harry ;
Kamm, Roger D. .
LAB ON A CHIP, 2012, 12 (16) :2942-2950