We study effectively the simultaneous approximation of n - 1 different complex numbers by conjugate algebraic integers of degree n over Z(square-root -1). This is a refinement of a result of Motzkin [2] (see also [3], p. 50) who has no estimate for the remaining conjugate. If the n - 1 different complex numbers lie symmetrically about the real axis, then Z(square-root -1) can be replaced by Z. In Section 1 we prove an effective version of a Kronecker approximation theorem; we start with an idea of H. Bohr and E. Landau (see e.g. [4]); later we use an estimate of A. Baker for linear forms with logarithms. This and also Rouche's theorem are then applied in Section 2 to give the result; the required irreducibility is guaranteed by the Schonemann-Eisenstein criterion.
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Bajpai, Prajeet
Bugeaud, Yann
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, IRMA, UMR 7501, 7 rue Rene Descartes, F-67084 Strasbourg, France
CNRS, 7 rue Rene Descartes, F-67084 Strasbourg, FranceUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Bugeaud, Yann
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES,
2025,
68
(01):
: 262
-
269
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Bajpai, Prajeet
Bugeaud, Yann
论文数: 0引用数: 0
h-index: 0
机构:
Univ ?e Strasbourg, IRMA, UMR 7501, Strasbourg, France
CNRS, 7 rue Rene Descartes, F-67084 Strasbourg, France
Inst Univ France, Paris, FranceUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada