Hermitian and positive C-semigroups on Banach spaces

被引:4
作者
Li, YC
Shaw, SY
机构
[1] CHUNG YUAN CHRISTIAN UNIV,DEPT MATH,CHUNGLI,TAIWAN
[2] NATL CENT UNIV,DEPT MATH,CHUNGLI 32054,TAIWAN
关键词
D O I
10.2977/prims/1195163918
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two classes of operator families, namely n-times integrated C-semigroups of hermitian and positive operators on Banach spaces, are studied. By using Gelfand transform and a theorem of Sinclair, we prove some interesting special properties of such C-semigroups. For instances, every hermitian nondegenerate n-times integrated C-semigroup on a reflexive space is the n-times integral of some hermitian C-semigroup with a densely defined generator; an exponentially bounded C-semigroup on L(p)(mu)(1 < p < infinity) dominates C (a positive injective operator) if and only if its generator A is bounded, positive,and commutes with C; when C has dense range, the latter assertion is also true on L(1)(mu) and C-0(Omega).
引用
收藏
页码:625 / 644
页数:20
相关论文
共 22 条
[1]  
Arendt W., Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59, pp. 327-352, (1987)
[2]  
Resolvent positive operators, Proc. London Math. Soc, 54, pp. 321-349, (1987)
[3]  
Bonsall F.F., Duncan J., Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebra, London Math. Soc. Lecture Note Ser. Cambridge, 2, (1971)
[4]  
Numerical Ranges II London Math. Soc. Lecture Note Ser. Cambridge, 10, (1973)
[5]  
Davies E.B., Pang M.M., The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc, 55, pp. 181-208, (1987)
[6]  
deLaubenfels R., C-semigroups and the Cauchy problem. J. Fund. Anal., III, pp. 44-61, (1993)
[7]  
Existence Families, Functional Calculi and Evolution Equations, Lect. Notes Math., (1994)
[8]  
Hille E., Phillips R.S., Functional Analysis and Semi-groups, AMS Coll. Publ., 31, (1957)
[9]  
Kellermann H., Hieber M., Integrated semigroups, J. Funct. Anal., 84, pp. 321-349, (1989)
[10]  
Li Y.C., Shaw S.Y., Integrated C-semigroup and the abstract Cauchy problem, preprint, (1991)