OPTION PRICING WITH VG-LIKE MODELS

被引:20
作者
Finlay, Richard [1 ]
Seneta, Eugene [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, F07 Univ Sydney, Sydney, NSW 2006, Australia
关键词
Variance Gamma process; difference of gamma processes; option pricing; long range dependence; static arbitrage;
D O I
10.1142/S0219024908005093
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We relax separately two assumptions regarding the Variance Gamma (VG) process and price options accordingly. In the case of the Difference of Gammas model we achieve a better fit to market data than achieved by other comparable models. In the case of the long range dependent VG model, we find that the current "skew-correcting" approach to pricing options has shortcomings, and identify a number of model characteristics (flexible skewness, dependence of squared returns, accommodation of the leverage effect) which appear to be important in achieving a good fit to market data.
引用
收藏
页码:943 / 955
页数:13
相关论文
共 21 条
[1]  
Beran J., 1994, STAT LONG MEMORY PRO
[2]   Stochastic volatility for Levy processes [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
MATHEMATICAL FINANCE, 2003, 13 (03) :345-382
[3]  
Carr P., 1999, J COMPUT FINANC, V2, P61
[4]  
Carr P., 2005, FINANC RES LETT, V2, P125, DOI DOI 10.1016/J.FRL.2005.04.005
[5]   The range of traded option prices [J].
Davis, Mark H. A. ;
Hobson, David G. .
MATHEMATICAL FINANCE, 2007, 17 (01) :1-14
[6]  
Ding Z., 1993, J EMPIR FINANC, V1, P83, DOI DOI 10.1016/0927-5398(93)90006-D
[7]  
Dragulescu A. A., 2002, Quantitative Finance, V2, P443, DOI 10.1088/1469-7688/2/6/303
[8]   Stationary-increment variance-gamma and t models:: Simulation and parameter estimation [J].
Finlay, Richard ;
Seneta, Eugene .
INTERNATIONAL STATISTICAL REVIEW, 2008, 76 (02) :167-186
[9]   Stationary-increment student and variance-gamma processes [J].
Finlay, Richard ;
Seneta, Eugene .
JOURNAL OF APPLIED PROBABILITY, 2006, 43 (02) :441-453
[10]   Power-law correlations, related models for long-range dependence and their simulation [J].
Gneiting, T .
JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) :1104-1109