On geometric Hermite arcs

被引:0
|
作者
Juhasz, Imre [1 ]
机构
[1] Univ Miskolc, Dept Descript Geometry, Miskolc, Hungary
来源
ANNALES MATHEMATICAE ET INFORMATICAE | 2015年 / 45卷
关键词
Hermite arc; geometric constraint; pencil of conincs;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A geometric Hermite arc is a cubic curve in the plane that is specified by its endpoints along with unit tangent vectors and signed curvatures at them. This problem has already been solved by means of numerical procedures. Based on projective geometric considerations, we deduce the problem to finding the base points of a pencil of conics, that reduces the original quartic problem to a cubic one that easier can exactly be solved. A simple solvability criterion is also provided.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [1] Geometric Hermite interpolation based on the representation of circular arcs
    Chen, Jun
    Journal of Information and Computational Science, 2013, 10 (03): : 813 - 819
  • [2] GEOMETRIC HERMITE INTERPOLATION
    HOLLIG, K
    KOCH, J
    COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (06) : 567 - 580
  • [3] A geometric approach for Hermite subdivision
    Costantini, Paolo
    Manni, Carla
    NUMERISCHE MATHEMATIK, 2010, 115 (03) : 333 - 369
  • [4] A geometric approach for Hermite subdivision
    Paolo Costantini
    Carla Manni
    Numerische Mathematik, 2010, 115 : 333 - 369
  • [5] Geometric Predictors of Knotted and Linked Arcs
    Sleiman, Joseph L.
    Burton, Robin H.
    Caraglio, Michele
    Fosado, Yair Augusto Gutierrez
    Michieletto, Davide
    ACS POLYMERS AU, 2022, 2 (05): : 341 - 350
  • [6] A geometric approach to Mathon maximal arcs
    De Clerck, F.
    De Winter, S.
    Maes, T.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (04) : 1196 - 1211
  • [7] Clothoid fitting and geometric Hermite subdivision
    Ulrich Reif
    Andreas Weinmann
    Advances in Computational Mathematics, 2021, 47
  • [8] Optimal geometric hermite interpolation of curves
    Schaback, R
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 417 - 428
  • [9] Clothoid fitting and geometric Hermite subdivision
    Reif, Ulrich
    Weinmann, Andreas
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (04)
  • [10] Geometric Hermite interpolation with circular precision
    Farin, Gerald
    COMPUTER-AIDED DESIGN, 2008, 40 (04) : 476 - 479