EXTREMALS OF FUNCTIONALS WITH COMPETING SYMMETRIES

被引:97
作者
CARLEN, EA [1 ]
LOSS, M [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
关键词
D O I
10.1016/0022-1236(90)90114-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new method of producing optimizing sequences for highly symmetric functionals. The sequences have good convergence properties built in. We apply the method in different settings to give elementary proofs of some classical inequalities-such as the Hardy-Littlewood-Sobolev and the logarithmic Sobolev inequality-in their sharp form. © 1990.
引用
收藏
页码:437 / 456
页数:20
相关论文
共 14 条
[1]  
Almgren FJ., 1989, J AM MATH SOC, V2, P683
[2]  
AUBIN T, 1975, CR ACAD SCI A MATH, V280, P279
[3]   SPHERICAL REARRANGEMENTS, SUBHARMONIC FUNCTIONS, AND ]-FUNCTIONS IN N-SPACE [J].
BAERNSTEIN, A ;
TAYLOR, BA .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (02) :245-268
[4]  
BECKNER W, SOBOLEV INEQUALITIES
[5]  
Brascamp HJ., 1974, J FUNCT ANAL, V17, P227
[6]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153
[7]  
Chiti G., 1979, APPL ANAL, V9, P23, DOI [10.1080/00036817908839248, DOI 10.1080/00036817908839248]
[8]  
EHRHARD A, 1984, ANN SCI ECOLE NORM S, V17, P317
[9]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[10]  
Hardy GH., 1988, INEQUALITIES