GENERALIZED QUANTIZATION SCHEME FOR LIE-ALGEBRAS

被引:19
作者
LYAKHOVSKY, V [1 ]
MUDROV, A [1 ]
机构
[1] ST PETERSBURG STATE UNIV, INST PHYS, ST PETERSBURG 198904, USSR
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 19期
关键词
D O I
10.1088/0305-4470/25/19/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized form of the coproduct for quantum Lie algebras is proposed. It is demonstrated that the admissible quantum compositions can be easily found. The whole construction gives rise to the wide class of multidimensional Hopf algebras. The efficiency of the method is demonstrated on examples of non-semisimple quantum universal enveloping algebras.
引用
收藏
页码:L1139 / L1143
页数:5
相关论文
共 10 条
[1]  
Abe E., 1980, CAMBRIDGE TRACTS MAT, V74
[2]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[3]   3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2548-2551
[4]  
CELEGINI E, 1991, DFF139691 PREPR
[5]  
DEMIDOV EE, 1990, RIMS701 PREPR
[6]  
DRINFELD VG, 1986, P INT C MATH BERKELE, V1, P798
[7]  
Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
[8]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[9]  
Kulis PP, 1981, ZAPISKI NAUCHN SEMIN, V101, P101, DOI 10.1007/BF01084171
[10]  
KULISH PP, 1991, TEOR MAT FIZ, V86, P157