ON THE CLASS OF ORDER DUNFORD-PETTIS OPERATORS

被引:0
作者
Bouras, Khalid [1 ]
El Kaddouri, Abdelmonaim [2 ]
H'Michane, Jawad [2 ]
Moussa, Mohammed [2 ]
机构
[1] Univ Abdelmalek Essaadi, Fac Polydisci Plinaire, BP 745, Larache, Morocco
[2] Ibn Tofail Univ, Kenitra, Morocco
来源
MATHEMATICA BOHEMICA | 2013年 / 138卷 / 03期
关键词
Dunford-Pettis operator; weak Dunford-Pettis operator; order Dunford-Pettis operator; order continuous norm; Schur property;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize Banach lattices E and F on which the adjoint of each operator from E into F which is order Dunford-Pettis and weak Dunford-Pettis, is Dunford-Pettis. More precisely, we show that if E and F are two Banach lattices then each order DunfordPettis and weak Dunford-Pettis operator T from E into F has an adjoint Dunford-Pettis operator T' from F' into E' if, and only if, the norm of E' is order continuous or F' has the Schur property. As a consequence we show that, if E and F are two Banach lattices such that E or F has the Dunford-Pettis property, then each order Dunford-Pettis operator T from E into F has an adjoint T': F' -> E' which is Dunford-Pettis if, and only if, the norm of E' is order continuous or F' has the Schur property.
引用
收藏
页码:289 / 297
页数:9
相关论文
共 7 条
[1]  
Aliprantis CD., 2006, POSITIVE OPERATORS, DOI [10.1007/978-1-4020-5008-4, DOI 10.1007/978-1-4020-5008-4]
[2]   DUNFORD-PETTIS SETS IN THE SPACE OF BOCHNER INTEGRABLE FUNCTIONS [J].
ANDREWS, KT .
MATHEMATISCHE ANNALEN, 1979, 241 (01) :35-41
[3]  
Aqzzouz B, 2012, ACTA MATH UNIV COMEN, V81, P185
[4]  
Aqzzouz B., 2011, INT J MATH MATH SCI
[5]  
Aqzzouz B, 2013, DEMONSTR MATH, V46, P165
[6]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320
[7]  
Meyer-Nieberg P., 1991, BANACH LATTICES