Resistance Conditions and Applications

被引:1
作者
Kinnunen, Juha [1 ]
Silvestre, Pilar [1 ]
机构
[1] Aalto Univ, Dept Math, FI-00076 Aalto, Finland
关键词
Metric measure space; resistance condition; Poincare inequality; Hausdorff content of codimension one; Hardy-Littlewood maximal function; Sobolev type inequalities;
D O I
10.2478/agms-2013-0007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies analytic aspects of so-called resistance conditions on metric measure spaces with a doubling measure. These conditions are weaker than the usually assumed Poincare inequality, but however, they are sufficiently strong to imply several useful results in analysis on metric measure spaces. We show that under a perimeter resistance condition, the capacity of order one and the Hausdorff content of codimension one are comparable. Moreover, we have connections to the Sobolev inequality for compactly supported Lipschitz functions on balls as well as capacitary strong type estimates for the Hardy-Littlewood maximal function. We also consider extensions to Sobolev type inequalities with two different measures and Lorentz type estimates.
引用
收藏
页码:276 / 294
页数:19
相关论文
共 18 条
[11]   The BV-capacity in metric spaces [J].
Hakkarainen, Heikki ;
Kinnunen, Juha .
MANUSCRIPTA MATHEMATICA, 2010, 132 (1-2) :51-73
[12]   Lebesgue points and capacities via the boxing inequality in metric spaces [J].
Kinnunen, Juha ;
Korte, Riikka ;
Shanmugalingam, Nageswari ;
Tuominen, Heli .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :401-430
[13]   The De Giorgi measure and an obstacle problem related to minimal surfaces in metric spaces [J].
Kinnunen, Juha ;
Korte, Riikka ;
Shanmugalingam, Nageswari ;
Tuominen, Heli .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (06) :599-622
[14]   Conductor and capacitary inequalities for functions on topological spaces and their applications to Sobolev-type imbeddings [J].
Maz'ya, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) :408-430
[15]   Conductor inequalities and criteria for Sobolev type two-weight imbeddings [J].
Maz'ya, Vladimir .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (01) :94-114
[16]   Functions of bounded variation on "good" metric spaces [J].
Miranda, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08) :975-1004
[17]   Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator [J].
Orobitg, J ;
Verdera, J .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :145-150
[18]  
Silvestre P., 2012, THESIS