SOME RESULTS ABOUT THE EXISTENCE OF A 2ND POSITIVE SOLUTION IN A QUASI-LINEAR CRITICAL PROBLEM

被引:109
作者
AZORERO, JG
ALONSO, IP
机构
关键词
D O I
10.1512/iumj.1994.43.43041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
-Delta(p)u = -div(\del u\(p-2)del u) = lambda\u\(q-2)u+\u\(p*-2)u in Omega, u\delta Omega = 0, where Omega subset of R(N) is a smooth bounded domain, 1 < q < p < N, lambda > 0, p* = Np/(N-p). In this work we prove the existence of lambda(0) such that for 0 < lambda < lambda(0), the problem (P-lambda) has at least two positive solutions if either 2N/(N + 2) < p < 3 and 1 < q < p, or p greater than or equal to 3 and p > q > p* - 2/(p - 1).
引用
收藏
页码:941 / 957
页数:17
相关论文
共 18 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[4]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[5]   ON LIMITS OF SOLUTIONS OF ELLIPTIC PROBLEMS WITH NEARLY CRITICAL EXPONENT [J].
AZORERO, JG ;
ALONSO, IP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (11-12) :2113-2126
[6]  
AZORERO JPG, 1987, COMMUN PART DIFF EQ, V12, P1389
[7]  
BOCCARDO L, IN PRESS NONLINEAR A
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]  
BREZIS H, 1986, COMMUN PUR APPL MATH, V39, P17