PENALTY-PROXIMAL METHODS IN CONVEX-PROGRAMMING

被引:34
作者
AUSLENDER, A
CROUZEIX, JP
FEDIT, P
机构
[1] Univ of Clermont II, Aubiere, Fr, Univ of Clermont II, Aubiere, Fr
关键词
D O I
10.1007/BF00939042
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
20
引用
收藏
页码:1 / 21
页数:21
相关论文
共 20 条
[1]  
AUSLENDER A, 1987, MATH PROGRAM STUD, V30, P102, DOI 10.1007/BFb0121157
[2]   NECESSARY AND SUFFICIENT CONDITIONS FOR A PENALTY METHOD TO BE EXACT [J].
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1975, 9 (01) :87-99
[3]   A DESCENT ALGORITHM FOR NONSMOOTH CONVEX-OPTIMIZATION [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1984, 30 (02) :163-175
[4]  
HUARD P, 1968, RAIRO, V7, P43
[5]  
KAPLAN AA, 1975, SOV MATH, V19, P795
[6]   AN EXACT PENALTY-FUNCTION ALGORITHM FOR NON-SMOOTH CONVEX CONSTRAINED MINIMIZATION PROBLEMS [J].
KIWIEL, KC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :111-119
[7]  
KIWIEL KC, 1984, IIASA M NONDIFFERENT
[8]  
KIWIEL KC, 1985, J MATH ANAL APPLICAT, V105, P446
[9]  
LEMARECHAL C, 1981, NONLINEAR PROGRAMMIN, V4, P246
[10]  
LEMARECHAL C, 1975, MATH PROGRAMMING STU, V3, P93