Differential Operators and Fekete-Szego Problem

被引:0
作者
Shanmugam, T. N. [1 ]
Ramachandran, C. [2 ]
机构
[1] Anna Univ Chenai, Dept Math, Coll Engn Guindy, Madras 600025, Tamil Nadu, India
[2] Anna Univ Technol Chennai, Dept Math, Univ Coll Engn Villupuram, Villupuram 605602, Tamil Nadu, India
关键词
Analytic functions; Starlike functions; Convex functions; Phi-like functions; Subordination; Fekete-Szego inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a sharp upper bound for the functional vertical bar a3 - mu a(2)(2)vertical bar for functions f is an element of A in the class of function S* (Phi(1), Phi(2), phi) which we call it as the class of Phi(2) - like functions of type Phi(1). Also certain applications of the main result for a class of functions defined by convolution are given. As a special case of the result, the Fekete-Szego inequality for a class of functions defined through fractional derivatives is obtained. The objective of this paper is to give a generalization of the earlier Fekete-Szego inequalities.
引用
收藏
页码:483 / 496
页数:14
相关论文
共 22 条
[1]   PHI-LIKE ANALYTIC-FUNCTIONS .1. [J].
BRICKMAN, L .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (03) :555-558
[2]   STARLIKE AND PRESTARLIKE HYPERGEOMETRIC-FUNCTIONS [J].
CARLSON, BC ;
SHAFFER, DB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :737-745
[3]  
Fekete M., 1933, J LOND MATH SOC, V8, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[4]  
Goodman A.W., 1991, ANN POL MATH, V56, P87, DOI [DOI 10.4064/ap-56-1-87-92, 10.4064/ap-56-1-87-92, DOI 10.4064/AP-56-1-87-92]
[5]  
Janowski W, 1973, B ACAD POLON SCI SER, V21, P17
[6]   A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS [J].
KEOGH, FR ;
MERKES, EP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (01) :8-&
[8]   ON THE FEKETE-SZEGO PROBLEM FOR CLOSE-TO-CONVEX FUNCTIONS-II [J].
KOEPF, W .
ARCHIV DER MATHEMATIK, 1987, 49 (05) :420-433
[9]  
Ma W., 1994, P C COMPL AN
[10]  
Miller S.S., 1974, REV ROUMAINE MATH PU, V19, P213