THE BOUNDARY HARNACK PRINCIPLE FO NON-DIVERGENCE FROM ELLIPTIC-OPERATORS

被引:27
作者
BASS, RF
BURDZY, K
机构
[1] Department of Mathematics, University of Washington, Washington, 98195, Seattle
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1994年 / 50卷
基金
美国国家科学基金会;
关键词
D O I
10.1112/jlms/50.1.157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If L is a uniformly elliptic operator in non-divergence form, the boundary Harnack principle for the ratio of positive L-harmonic functions holds in Holder domains of order alpha if alpha > 1/2. A counterexample shows that 1/2 is sharp. For Holder domains of order alpha with alpha is-an-element-of (0,1], the boundary Harnack principle holds provided the domain also satisfies a strong uniform regularity condition.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 13 条
[1]  
ANCONA A, 1978, ANN I FOURIER GRENOB, V28, P169, DOI 10.5802/aif.720
[2]   HOLDER DOMAINS AND THE BOUNDARY HARNACK PRINCIPLE [J].
BANUELOS, R ;
BASS, RF ;
BURDZY, K .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (01) :195-200
[3]   LIFETIMES OF CONDITIONED DIFFUSIONS [J].
BASS, RF ;
BURDZY, K .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (3-4) :405-443
[4]   A BOUNDARY HARNACK PRINCIPLE IN TWISTED HOLDER DOMAINS [J].
BASS, RF ;
BURDZY, K .
ANNALS OF MATHEMATICS, 1991, 134 (02) :253-276
[5]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[6]  
DAHLBERG BEJ, 1977, ARCH RATION MECH AN, V65, P276
[7]  
Fabes E., 1988, REV MAT IBEROAMERICA, V4, P227, DOI DOI 10.4171/RMI/73
[8]  
Ito, 1965, GRUNDLEHREN MATH WIS, V125
[9]   A CERTAIN PROPERTY OF SOLUTIONS OF PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS [J].
KRYLOV, NV ;
SAFONOV, MV .
MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 16 (01) :151-164
[10]  
PORT SC, 1978, BROWNIAN MOTION CLAS