SOME RESULTS ON SOLUTIONS OF MINIMAL PERIOD TO SUPERQUADRATIC HAMILTONIAN-SYSTEMS

被引:31
作者
GIRARDI, M
MATZEU, M
机构
关键词
D O I
10.1016/0362-546X(83)90039-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:475 / 482
页数:8
相关论文
共 9 条
[1]   SOLUTIONS OF MINIMAL PERIOD FOR A CLASS OF CONVEX HAMILTONIAN-SYSTEMS [J].
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ANNALEN, 1981, 255 (03) :405-421
[2]  
AMBROSETTI A, 1981, UNPUB FEB P GIORN LA
[3]  
AMBROSETTI A, 1981, J DIFFER EQUATIONS, V43, P1
[4]   HAMILTONIAN TRAJECTORIES HAVING PRESCRIBED MINIMAL PERIOD [J].
CLARKE, FH ;
EKELAND, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :103-116
[5]   ON THE NUMBER OF PERIODIC TRAJECTORIES FOR A HAMILTONIAN FLOW ON A CONVEX ENERGY SURFACE [J].
EKELAND, I ;
LASRY, JM .
ANNALS OF MATHEMATICS, 1980, 112 (02) :283-319
[6]   PERIODIC-SOLUTIONS OF HAMILTONIAN EQUATIONS AND A THEOREM OF RABINOWITZ,P. [J].
EKELAND, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 34 (03) :523-534
[7]  
MANCINI G, 1981, UNPUB FEB P GIORN LA
[8]  
RABINOWITZ P, 1978, COMMUNS PURE APPL MA, V11, P157
[9]   ON SUB-HARMONIC SOLUTIONS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (05) :609-633