CONTROLLED GROWTH OF HIGHLY ORIENTED ZnO NANOROD ARRAY ON AMORPHOUS GLASS SUBSTRATE AND THEIR OPTICAL AND ELECTRICAL PROPERTIES

被引:6
作者
Kushwaha, Ajay [1 ]
Aslam, M. [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India
关键词
Nanorod array; oriented; amorphous glass; photoconductivity and photocurrent;
D O I
10.1142/S0219581X11009155
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Highly oriented zinc oxide nanorod array is fabricated on ZnO quantum dots functionalized amorphous glass substrate. Simplified aqueous based beaker-chemistry is utilized for a controlled growth of vertically oriented nanorod arrays. XRD studies exhibit (002) orientation of the nanorod arrays which are achieved by sheer control of parameters such as ZnO seed layer morphology, molarity, reaction time and deposition temperature. A lower concentration of precursor leads to the sparse nanorods alignment while a higher concentration renders a (002) oriented of nanorod array film. We find that the amorphous substrate plays no role and a preannealed quantum dot array leads to an oriented structure when the growth is faster and the quantum dot surface provides an optimal site for oriented growth. The photoluminescence (PL) spectra reflect a strong UV emission at 380 nm and a broad green orange emission band nearly 600 nm which is generally attributed to the defect band transition. UV-visible spectra has a sharp jump at 380 nm for the excitonic band absorptions. The DC conductivity measurement reveals that the film is a good semiconductor (order of sigma = 10(-7) ohm(-1) cm(-1)) and provides a very promising platform for photovoltaic and optoelectronic device applications. The conductivity of the ZnO nanorod array becomes higher in orders of 10 with the illumination of UV light of the 350 nm wavelength.
引用
收藏
页码:635 / 639
页数:5
相关论文
共 15 条
[1]   Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts [J].
Comini, E ;
Faglia, G ;
Sberveglieri, G ;
Pan, ZW ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1869-1871
[2]   Temperature dependent electrical conductivity of Fe doped ZnO nanoparticles prepared by solution combustion method [J].
Dinesha, M. L. ;
Jayanna, H. S. ;
Ashoka, S. ;
Chandrappa, G. T. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 485 (1-2) :538-541
[3]   ZnO nanowire transistors [J].
Goldberger, J ;
Sirbuly, DJ ;
Law, M ;
Yang, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (01) :9-14
[4]   Growth mechanism and growth habit of oxide crystals [J].
Li, WJ ;
Shi, EW ;
Zhong, WZ ;
Yin, ZW .
JOURNAL OF CRYSTAL GROWTH, 1999, 203 (1-2) :186-196
[5]   Photoluminescence and electrical transport characteristics of ZnO nanorods grown by vapor-solid technique [J].
Mandal, S. ;
Sambasivarao, K. ;
Dhar, A. ;
Ray, S. K. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (02)
[6]   Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators [J].
Minne, SC ;
Manalis, SR ;
Quate, CF .
APPLIED PHYSICS LETTERS, 1995, 67 (26) :3918-3920
[7]   Synthetic hollow zinc oxide microparticles [J].
Neves, MC ;
Trindade, T ;
Timmons, AMB ;
de Jesus, JDP .
MATERIALS RESEARCH BULLETIN, 2001, 36 (5-6) :1099-1108
[8]   A comprehensive review of ZnO materials and devices -: art. no. 041301 [J].
Ozgür, U ;
Alivov, YI ;
Liu, C ;
Teke, A ;
Reshchikov, MA ;
Dogan, S ;
Avrutin, V ;
Cho, SJ ;
Morkoç, H .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (04) :1-103
[9]   Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method [J].
Polsongkram, D. ;
Chamninok, P. ;
Pukird, S. ;
Chow, L. ;
Lupan, O. ;
Chai, G. ;
Khallaf, H. ;
Park, S. ;
Schulte, A. .
PHYSICA B-CONDENSED MATTER, 2008, 403 (19-20) :3713-3717
[10]   Time-resolved photoluminescence lifetime measurements of the Γ5 and Γ6 free excitons in ZnO [J].
Reynolds, DC ;
Look, DC ;
Jogai, B ;
Hoelscher, JE ;
Sherriff, RE ;
Harris, MT ;
Callahan, MJ .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (04) :2152-2153