Bio-inspired robotic manta ray powered by ionic polymer-metal composite artificial muscles

被引:75
作者
Chen, Zheng [1 ]
Um, Tae I. [1 ]
Bart-Smith, Hilary [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
关键词
ionic polymer-metal composite; artificial muscle; bio-inspired robot;
D O I
10.1080/19475411.2012.686458
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The manta ray (Manta birostris) is the largest species of rays that demonstrates excellent swimming capabilities via large-amplitude flapping of its pectoral fins. In this article, we present a bio-inspired robotic manta ray using ionic polymer-metal composite (IPMC) as artificial muscles to mimic the swimming behavior of the manta ray. The robot utilizes two artificial pectoral fins to generate undulatory flapping motions, which produce thrust for the robot. Each pectoral fin consists of an IPMC muscle in the leading edge and a passive polydimethylsiloxane membrane in the trailing edge. When the IPMC is actuated, the passive polydimethylsiloxane membrane follows the bending of the leading edge with a phase delay, which leads to an undulatory flapping motion on the fin. Characterization of the pectoral fin has shown that the fin can generate flapping motions with up to 100% tip deflection and 40. twist angle. To test the free-swimming performance of the robot, a light and compact on-board control unit with a lithium ion polymer battery has been developed. The experimental results have shown that the robot can swim at 0.067 BL/s with portable power consumption of under 2.5 W.
引用
收藏
页码:296 / 308
页数:13
相关论文
共 50 条
  • [1] Bio-inspired hovering and locomotion via wirelessly powered ionic polymer metal composites
    Abdelnour, Karl
    Stinchcombe, Adam
    Porfiri, Maurizio
    Zhang, Jun
    Childress, Stephen
    BIOINSPIRATION, BIOMIMETICS, AND BIOREPLICATION, 2011, 7975
  • [2] Anisotropic surface roughness enhances bending response of ionic polymer-metal composite (IPMC) artificial muscles
    Stoimenov, Boyko L.
    Rossiter, Jonathan M.
    Mukai, Toshiharu
    SMART MATERIALS IV, 2007, 6413
  • [3] Ionic polymer-metal composite applications
    ul Haq, Mazhar
    Gang, Zhao
    EMERGING MATERIALS RESEARCH, 2016, 5 (01) : 153 - 164
  • [4] A Bionic Eye Actuated by Ionic Polymer-Metal Composite (IPMC) Artificial Muscle
    Yu, Min
    Li, Yuxiu
    He, Qingsong
    Song, Linlin
    Dai, Zhendong
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2011, 2011, 7976
  • [5] Numerical and Experimental Investigation of a Biomimetic Robotic Jellyfish Actuated by Ionic Polymer-Metal Composite
    Trabia, Sarah
    Shen, Qi
    Stalbaum, Tyler
    Hunt, Robert
    Hwang, Taeseon
    Kim, Kwang
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 204 - 205
  • [6] Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer-Metal Composite Caudal Fin
    Chen, Zheng
    Shatara, Stephan
    Tan, Xiaobo
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2010, 15 (03) : 448 - 459
  • [7] Fish Inspired Biomimetic Ionic Polymer-Metal Composite Pectoral Fins Using Labriform Propulsion
    Karthigan, G.
    Mukherjee, Sujoy
    Ganguli, Ranjan
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2015, 22 (11) : 933 - 944
  • [8] Integrated static and dynamic modeling of an ionic polymer-metal composite actuator
    Sun, An-Bang
    Bajon, Damienne
    Moschetta, Jean-Marc
    Benard, Emmanuel
    Thipyopas, Chinnapat
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2015, 26 (10) : 1164 - 1178
  • [9] Limited-angle motor using ionic polymer-metal composite
    Takagi, K
    Luo, ZW
    Asaka, K
    Tahara, K
    Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices( EAPAD), 2005, 5759 : 487 - 496
  • [10] Ionic polymer-metal composite material as a diaphragm for micropump devices
    Santos, J.
    Lopes, B.
    Costa Branco, P. J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2010, 161 (1-2) : 225 - 233