Optimization of power consumption in the iterative solution of sparse linear systems on graphics processors

被引:8
作者
Anzt, Hartwig [1 ]
Castillo, Maribel [2 ]
Fernandez, Juan C. [2 ]
Heuveline, Vincent [1 ]
Igual, Francisco D. [2 ]
Mayo, Rafael [2 ]
Quintana-Orti, Enrique S. [2 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl & Numer Math 4, Fritz Erler St 23, D-76133 Karlsruhe, Germany
[2] Univ Jaume 1, Dept Ingn & Ciencia Computadores, Castellon De La Plana, Spain
来源
COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT | 2012年 / 27卷 / 04期
关键词
Sparse linear systems; Iterative solvers; GMRES; Mixed precision iterative refinement; Power-aware algorithms; Graphics processors (GPUs); Idle-wait;
D O I
10.1007/s00450-011-0195-8
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we analyze the power consumption of different GPU-accelerated iterative solver implementations enhanced with energy-saving techniques. Specifically, while conducting kernel calls on the graphics accelerator, we manually set the host system to a power-efficient idle-wait status so as to leverage dynamic voltage and frequency control. While the usage of iterative refinement combined with mixed precision arithmetic often improves the execution time of an iterative solver on a graphics processor, this may not necessarily be true for the power consumption as well. To analyze the trade-off between computation time and power consumption we compare a plain GMRES solver and its preconditioned variant to the mixed-precision iterative refinement implementations based on the respective solvers. Benchmark experiments conclusively reveal how the usage of idle-wait during GPU-kernel calls effectively leverages the power-tools provided by hardware, and improves the energy performance of the algorithm.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 2007, NVIDIA CUDA CUBLAS L
[2]  
Anzt H, 2011, EMCL PREPRINT SERIES
[3]  
Anzt H, 2011, P 25 IEEE INT PAR DI
[4]   Energy efficiency of mixed precision iterative refinement methods using hybrid hardware platforms An evaluation of different solver and hardware configurations [J].
Anzt, Hartwig ;
Rocker, Bjoern ;
Heuveline, Vincent .
COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2010, 25 (3-4) :141-148
[5]  
Bell N, 2009, STUDENTS GUIDE TO THE MA TESOL, P1
[6]  
Dongarra J. J., 1998, SOFTW ENVIRONM TOOL
[7]   The International Exascale Software Project roadmap [J].
Dongarra, Jack ;
Beckman, Pete ;
Moore, Terry ;
Aerts, Patrick ;
Aloisio, Giovanni ;
Andre, Jean-Claude ;
Barkai, David ;
Berthou, Jean-Yves ;
Boku, Taisuke ;
Braunschweig, Bertrand ;
Cappello, Franck ;
Chapman, Barbara ;
Chi, Xuebin ;
Choudhary, Alok ;
Dosanjh, Sudip ;
Dunning, Thom ;
Fiore, Sandro ;
Geist, Al ;
Gropp, Bill ;
Harrison, Robert ;
Hereld, Mark ;
Heroux, Michael ;
Hoisie, Adolfy ;
Hotta, Koh ;
Jin, Zhong ;
Ishikawa, Yutaka ;
Johnson, Fred ;
Kale, Sanjay ;
Kenway, Richard ;
Keyes, David ;
Kramer, Bill ;
Labarta, Jesus ;
Lichnewsky, Alain ;
Lippert, Thomas ;
Lucas, Bob ;
Maccabe, Barney ;
Matsuoka, Satoshi ;
Messina, Paul ;
Michielse, Peter ;
Mohr, Bernd ;
Mueller, Matthias S. ;
Nagel, Wolfgang E. ;
Nakashima, Hiroshi ;
Papka, Michael E. ;
Reed, Dan ;
Sato, Mitsuhisa ;
Seidel, Ed ;
Shalf, John ;
Skinner, David ;
Snir, Marc .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2011, 25 (01) :3-60
[8]   Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations [J].
Goeddeke, Dominik ;
Strzodka, Robert ;
Turek, Stefan .
INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2007, 22 (04) :221-256
[9]  
Kogge P., 2008, EXASCALE COMPUTING S
[10]  
Lampe F, 2010, GREEN IT VIRTUALISIE