ON NATURAL METRICS ON TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS

被引:0
|
作者
Abbassi, Mohamed Tahar Kadaoui [1 ]
Sarih, Maati [2 ]
机构
[1] Univ Sidi Mohamed Ben Abdallah, Dept Math, Fac Sci Dhar El Mahraz, BP 1796, Fes, Fes, Morocco
[2] Univ Hassan 1er, Fac Sci & Tech Settat, Dept Math & Informat, Settat 26000, Morocco
来源
ARCHIVUM MATHEMATICUM | 2005年 / 41卷 / 01期
关键词
Riemannian manifold; tangent bundle; natural operation; g-natural metric; Geodesic flow; incompressibility;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a class of metrics on the tangent bundle TM of a Riemannian manifold (M, g) (oriented, or non-oriented, respectively), which are 'naturally constructed' from the base metric g [15]. We call them "g-natural metrics" on TM. To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [18]) of finding Riemannian metrics on TM from some quadratic forms on OM x R-m to find metrics (not necessary Riemannian) on TM, we prove that all g-natural metrics on TM can be obtained by Musso-Tricerri's generalized scheme. We calculate also the Levi-Civita connection of Riemannian g-natural metrics on TM. As application, we sort out all Riemannian g-natural metrics with the following properties, respectively: 1) The fibers of TM are totally geodesic. 2) The geodesic flow on TM is incompressible. We shall limit ourselves to the non-oriented situation.
引用
收藏
页码:71 / 92
页数:22
相关论文
共 50 条
  • [41] A NEW CLASS OF RIEMANNIAN METRICS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD
    Baghban, Amir
    Sababe, Saeed Hashemi
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1255 - 1267
  • [42] g-NATURAL METRICS OF CONSTANT CURVATURE ON UNIT TANGENT SPHERE BUNDLES
    Abbassi, M. T. K.
    Calvaruso, G.
    ARCHIVUM MATHEMATICUM, 2012, 48 (02): : 81 - 95
  • [43] Normal Bundles of Surfaces in Riemannian Manifolds
    Lei Sun
    Zhong-Hua Hou
    Mediterranean Journal of Mathematics, 2015, 12 : 173 - 185
  • [44] FLAT RIEMANNIAN MANIFOLDS AS TORUS BUNDLES
    Filar, Tomasz
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2380 - 2387
  • [45] Bochner flatness of tangent bundles with g-natural almost Hermitian metrics
    David E. Blair
    Handan Yıldırım
    Annals of Global Analysis and Geometry, 2016, 49 : 259 - 269
  • [46] GENERAL NATURAL RIEMANNIAN ALMOST PRODUCT AND PARA-HERMITIAN STRUCTURES ON TANGENT BUNDLES
    Druta-Romaniuc, Simona-Luiza
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 497 - 510
  • [47] Bochner flatness of tangent bundles with g-natural almost Hermitian metrics
    Blair, David E.
    Yildirim, Handan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (03) : 259 - 269
  • [48] Normal Bundles of Surfaces in Riemannian Manifolds
    Sun, Lei
    Hou, Zhong-Hua
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (01) : 173 - 185
  • [49] RIEMANNIAN METRICS ON THE TANGENT BUNDLE OF A FINSLER SUBMANIFOLD
    Bejancu, Aurel
    Farran, Hani Reda
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 429 - 436
  • [50] Tangent Bundles on Special Manifolds for Action Recognition
    Lui, Yui Man
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2012, 22 (06) : 930 - 942