ON NATURAL METRICS ON TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS

被引:0
|
作者
Abbassi, Mohamed Tahar Kadaoui [1 ]
Sarih, Maati [2 ]
机构
[1] Univ Sidi Mohamed Ben Abdallah, Dept Math, Fac Sci Dhar El Mahraz, BP 1796, Fes, Fes, Morocco
[2] Univ Hassan 1er, Fac Sci & Tech Settat, Dept Math & Informat, Settat 26000, Morocco
来源
ARCHIVUM MATHEMATICUM | 2005年 / 41卷 / 01期
关键词
Riemannian manifold; tangent bundle; natural operation; g-natural metric; Geodesic flow; incompressibility;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a class of metrics on the tangent bundle TM of a Riemannian manifold (M, g) (oriented, or non-oriented, respectively), which are 'naturally constructed' from the base metric g [15]. We call them "g-natural metrics" on TM. To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [18]) of finding Riemannian metrics on TM from some quadratic forms on OM x R-m to find metrics (not necessary Riemannian) on TM, we prove that all g-natural metrics on TM can be obtained by Musso-Tricerri's generalized scheme. We calculate also the Levi-Civita connection of Riemannian g-natural metrics on TM. As application, we sort out all Riemannian g-natural metrics with the following properties, respectively: 1) The fibers of TM are totally geodesic. 2) The geodesic flow on TM is incompressible. We shall limit ourselves to the non-oriented situation.
引用
收藏
页码:71 / 92
页数:22
相关论文
共 50 条
  • [1] Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with g-Natural Metrics
    Altunbas, Murat
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 95 - 103
  • [2] On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds
    Abbassi, MTK
    Sarih, M
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (01) : 19 - 47
  • [3] g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds
    Abbassi, M. T. K.
    NOTE DI MATEMATICA, 2008, 28 : 6 - 35
  • [4] A CLASS OF METRICS ON TANGENT BUNDLES OF PSEUDO-RIEMANNIAN MANIFOLDS
    Dida, H. M.
    Ikemakhen, A.
    ARCHIVUM MATHEMATICUM, 2011, 47 (04): : 293 - 308
  • [5] RIEMANNIAN METRICS ON TANGENT-BUNDLES
    MUSSO, E
    TRICERRI, F
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 150 : 1 - 19
  • [6] On Einstein Riemannian g-natural metrics on unit tangent sphere bundles
    Mohamed Tahar Kadaoui Abbassi
    Oldřich Kowalski
    Annals of Global Analysis and Geometry, 2010, 38 : 11 - 20
  • [7] HARMONIC SECTIONS OF TANGENT BUNDLES EQUIPPED WITH RIEMANNIAN g-NATURAL METRICS
    Abbassi, M. T. K.
    Calvaruso, G.
    Perrone, D.
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (02): : 259 - 288
  • [8] On Einstein Riemannian g-natural metrics on unit tangent sphere bundles
    Abbassi, Mohamed Tahar Kadaoui
    Kowalski, Oldrich
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (01) : 11 - 20
  • [9] On almost hyperHermitian structures on Riemannian manifolds and tangent bundles
    Bogdanovich, Serge A.
    Ermolitski, Alexander A.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (05): : 615 - 623
  • [10] Geometry of Riemannian manifolds and their unit tangent sphere bundles
    Boeckx, E
    Vanhecke, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (3-4): : 509 - 533