During a saddle-node bifurcation for real analytic interval maps, a pair of fixed points, attracting and repelling, collide and disappear. From the complex point of view, they do not disappear, but just become complex conjugate. The question is whether those new complex fixed points are attracting or repelling. We prove that this depends on the Schwarzian derivative S at the bifurcating fixed point. If S is positive, both fixed points are attracting; if it is negative, they are repelling.
机构:
Univ Barcelona, Dept Matemat Aplicada & Analisi, Gran Via de les Corts Catalanes 585, E-08005 Barcelona, SpainUniv Barcelona, Dept Matemat Aplicada & Analisi, Gran Via de les Corts Catalanes 585, E-08005 Barcelona, Spain
Fagella, Nuria
Garijo, Antonio
论文数: 0引用数: 0
h-index: 0
机构:Univ Barcelona, Dept Matemat Aplicada & Analisi, Gran Via de les Corts Catalanes 585, E-08005 Barcelona, Spain
机构:
Univ Barcelona, Dept Matemat Aplicada & Analisi, Gran Via de les Corts Catalanes 585, E-08005 Barcelona, SpainUniv Barcelona, Dept Matemat Aplicada & Analisi, Gran Via de les Corts Catalanes 585, E-08005 Barcelona, Spain
Fagella, Nuria
Garijo, Antonio
论文数: 0引用数: 0
h-index: 0
机构:Univ Barcelona, Dept Matemat Aplicada & Analisi, Gran Via de les Corts Catalanes 585, E-08005 Barcelona, Spain