FAULT DETECTION IN INDUCTION MOTORS USING VIBRATION PATTERNS AND ELM NEURAL NETWORK

被引:0
作者
Ramalho, G. L. B. [1 ]
Pereira, A. H. [1 ]
Reboucas Filho, P. P. [1 ]
Medeiros, C. M. S. [1 ]
机构
[1] Inst Fed Ceara, Limoeiro Do Norte, Brazil
关键词
Fault detection; MEMS sensors; ELM neural network;
D O I
10.15628/holos.2014.1925
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The condition monitoring of industrial electric motors provides information to help planning maintenance interventions before the occurrence of failures. This paper proposes a new approach for monitoring the operational condition of three-phase induction motors based on the extraction of characteristics of a signal obtained with MEMS accelerometers. The data extracted from the decomposition of the vibration signal using Haar Transform and the fractal dimension are used to train a ELM neural network. The results of our experiments demonstrated the feasibility of the proposed methodology in detection and identification of mechanical and electrical failures
引用
收藏
页码:185 / 194
页数:10
相关论文
共 50 条
  • [21] Online Fault Detection of Induction Motors Using Frequency Domain Independent Components Analysis
    Wang, Z.
    Chang, C. S.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2011,
  • [22] An Efficient Fault Detection Method for Induction Motors Using Thermal Imaging and Machine Vision
    Javed, Muhammad Rameez
    Shabbir, Zain
    Asghar, Furqan
    Amjad, Waseem
    Mahmood, Faisal
    Khan, Muhammad Omer
    Virk, Umar Siddique
    Waleed, Aashir
    Haider, Zunaib Maqsood
    SUSTAINABILITY, 2022, 14 (15)
  • [23] Induction motors fault detection using independent component analysis on phase current signals
    Enrique Garcia-Bracamonte, Juan
    Rangel-Magdaleno, Jose
    Manuel Ramirez-Cortes, Juan
    Gomez-Gil, Pilar
    Peregrina-Barreto, Hayde
    2018 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC): DISCOVERING NEW HORIZONS IN INSTRUMENTATION AND MEASUREMENT, 2018, : 1056 - 1061
  • [24] Fault Detection in Induction Motors using Park's Vector Approach and Wavelet Analysis
    Zarei, Jafar
    Yousefizadeh, Shirin
    2014 INTERNATIONAL CONFERENCE ON MECHATRONICS AND CONTROL (ICMC), 2014, : 1064 - 1068
  • [25] Condition Monitoring and Fault Detection in Small Induction Motors Using Machine Learning Algorithms
    Sobhi, Sayedabbas
    Reshadi, MohammadHossein
    Zarft, Nick
    Terheide, Albert
    Dick, Scott
    INFORMATION, 2023, 14 (06)
  • [26] Fault Detection in Gear Box With Induction Motors: an Experimental Study
    Verucchi, C.
    Bossio, G.
    Bossio, J.
    Acosta, G.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (06) : 2726 - 2731
  • [27] Dynamical models for fault detection in squirrel cage induction motors
    Rodriguez-Cortes, H.
    Hadjicostis, C. N.
    Stankovic, A. M.
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURES, 2007, 3 (1-2) : 161 - 191
  • [28] Fault detection in distillation column using NARX neural network
    Taqvi, Syed A.
    Tufa, Lemma Dendana
    Zabiri, Haslinda
    Maulud, Abdulhalim Shah
    Uddin, Fahim
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08) : 3503 - 3519
  • [29] Fault detection in distillation column using NARX neural network
    Syed A. Taqvi
    Lemma Dendana Tufa
    Haslinda Zabiri
    Abdulhalim Shah Maulud
    Fahim Uddin
    Neural Computing and Applications, 2020, 32 : 3503 - 3519
  • [30] Fault Detection of Brahmanbaria Gas Plant using Neural Network
    Sowgath, M. T.
    Ahmed, S.
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2014, : 733 - 736