FAULT DETECTION IN INDUCTION MOTORS USING VIBRATION PATTERNS AND ELM NEURAL NETWORK

被引:0
作者
Ramalho, G. L. B. [1 ]
Pereira, A. H. [1 ]
Reboucas Filho, P. P. [1 ]
Medeiros, C. M. S. [1 ]
机构
[1] Inst Fed Ceara, Limoeiro Do Norte, Brazil
关键词
Fault detection; MEMS sensors; ELM neural network;
D O I
10.15628/holos.2014.1925
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The condition monitoring of industrial electric motors provides information to help planning maintenance interventions before the occurrence of failures. This paper proposes a new approach for monitoring the operational condition of three-phase induction motors based on the extraction of characteristics of a signal obtained with MEMS accelerometers. The data extracted from the decomposition of the vibration signal using Haar Transform and the fractal dimension are used to train a ELM neural network. The results of our experiments demonstrated the feasibility of the proposed methodology in detection and identification of mechanical and electrical failures
引用
收藏
页码:185 / 194
页数:10
相关论文
共 50 条
[11]   Detection of broken rotor bar fault in an induction motor using convolution neural network [J].
Gundewar, Swapnil ;
Kane, Prasad ;
Andhare, Atul .
JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2022, 16 (02)
[12]   Induction motors bearing fault detection using pattern recognition techniques [J].
Zarei, Jafar .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) :68-73
[13]   Bearing Fault Detection in Induction Motors using MCSA and Statistical Analysis [J].
Morales-Perez, Carlos ;
Grande-Barreto, Jonas ;
Rangel-Magdaleno, Jose ;
Peregrina-Barreto, Hayde .
2018 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC): DISCOVERING NEW HORIZONS IN INSTRUMENTATION AND MEASUREMENT, 2018, :1079-1083
[14]   Mixed Eccentricity Fault Detection for Induction Motors Based on Time Synchronous Averaging of Vibration Signals [J].
Alimardani, Ramin ;
Rahideh, Akbar ;
Hedayati Kia, Shahin .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (03) :3173-3181
[15]   Vibration-Based Anomaly Detection for Induction Motors Using Machine Learning [J].
Ullah, Ihsan ;
Khan, Nabeel ;
Memon, Sufyan Ali ;
Kim, Wan-Gu ;
Saleem, Jawad ;
Manzoor, Sajjad .
SENSORS, 2025, 25 (03)
[16]   Identification of acoustic spectra for fault detection in induction motors [J].
Akcay, Huseyin ;
Germen, Emin .
AFRICON, 2013, 2013, :918-922
[17]   Pump Fault Detection Using Autoencoding Neural Network [J].
Vasiliev, Iulian ;
Frangu, Laurentiu ;
Cristea, Mihai Lucian .
2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, :426-431
[18]   Increasing the Robustness of Fault Detection for Induction Motors based on Neural Networks and the Winding Function Method [J].
Benninger, Moritz ;
Liebschner, Marcus ;
Kreischer, Christian .
2023 24TH INTERNATIONAL CONFERENCE ON THE COMPUTATION OF ELECTROMAGNETIC FIELDS, COMPUMAG, 2023,
[19]   Online Stator Interturn Fault Detection Using Hilbert Transform and Neural Network for Traction Motors of Urban Rail Vehicles [J].
Cao, Hu ;
Zhang, Xuhao ;
Wang, Mengqian ;
Huo, Ke ;
Wang, Huai ;
Feng, Xiaoyun .
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2024, 12 (04) :4236-4248
[20]   Detection and Classification of Multiple Faults of Induction Motors by Using Artificial Neural Networks [J].
Kaya, Kadir ;
Unsal, Abdurrahman .
JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2022, 25 (04) :1687-1699