PARALLEL ALGORITHMS FOR SOLVING LINEAR RECURRENCE SYSTEMS

被引:0
作者
STPICZYNSKI, P
机构
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present two parallel algorithms for solving linear recurrence systems R < n, m > where M is relatively small, which can be simply implemented on message passing multiprocessors. Theorems concerning their time complexity are also given together with the criterion when each of them should be used. If m is O(1) then the algorithms are effective .
引用
收藏
页码:343 / 348
页数:6
相关论文
共 10 条
[1]  
Borodin A., 1975, COMPUTATIONAL COMPLE
[2]   TIME AND PARALLEL PROCESSOR BOUNDS FOR LINEAR RECURRENCE SYSTEMS [J].
CHEN, SC ;
KUCK, DJ .
IEEE TRANSACTIONS ON COMPUTERS, 1975, C 24 (07) :701-717
[3]  
CHEN SC, 1975, THESIS U ILLINOIS UR
[4]  
COSNARD M, 1988, LECT NOTES COMPUT SC, V297, P611
[5]  
HAYFIL L, 1977, J ACM, V24, P513
[6]   SURVEY OF PARALLEL ALGORITHMS IN NUMERICAL LINEAR ALGEBRA [J].
HELLER, D .
SIAM REVIEW, 1978, 20 (04) :740-777
[7]  
Kuck DL., 1978, STRUCTURE COMPUTERS
[8]  
Modi J. J., 1988, PARALLEL ALGORITHMS
[9]   DATA ALLOCATION STRATEGIES FOR THE GAUSS AND JORDAN ALGORITHMS ON A RING OF PROCESSORS [J].
ROBERT, Y ;
TOURANCHEAU, B ;
VILLARD, G .
INFORMATION PROCESSING LETTERS, 1989, 31 (01) :21-29
[10]   SOLVING TRIANGULAR SYSTEMS ON A PARALLEL COMPUTER [J].
SAMEH, AH ;
BRENT, RP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (06) :1101-1113