ON A CLASS OF PRIMITIVE BCH-CODES

被引:44
作者
CHARPIN, P
机构
[1] Laboratoire d'Informatique Theorique et Programmation University Paris Vl. 4, 75252, Paris
关键词
D O I
10.1109/18.50397
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
-We introduce a special class of primitive BCH codes, the minimal BCH (MB) codes. Let C be an MB code of length pmr— 1 and designed distance d over GF (q), q = pr; then d = aY,”=oqi where q - a is minimal in a certain sense. We prove that an MB code so defined has as minimum distance its designed distance. Using the Roos bound, we propose a lower bound, sometimes tight, for the minimum distance of the dual of an MB code. We describe the subclass of weakly self-dual extended MB codes and then characterize some weakly self-dual extended BCH codes. Similarly, we prove that the nontrivial extended MB code over GF(4) is the smallest extended BCH code which is not an even code. We point out that extended MB codes are principal ideals of a modular algebra of type Fpr[FPm]. © 1990 IEEE
引用
收藏
页码:222 / 229
页数:8
相关论文
共 13 条
[1]  
ASSMUS EF, 1967, AFCRL670365 AIR FORC
[2]  
CAMION P, 1979, REV CETHEDEC, V79, P3
[3]  
CHARPIN P, 1986, LECT NOTES COMPUT SC, V229, P34
[4]  
CHARPIN P, 1982, CR ACAD SCI I-MATH, V295, P313
[5]  
CHARPIN P, 1983, ANN DISCRETE MATH, V17, P171
[6]  
CHARPIN P, AAECC5 LECTURE NOTES
[7]   SOME RESULTS ON CYCLIC CODES WHICH ARE INVARIANT UNDER AFFINE GROUP AND THEIR APPLICATIONS [J].
KASAMI, T ;
LIN, S ;
PETERSON, WW .
INFORMATION AND CONTROL, 1967, 11 (5-6) :475-&
[8]  
Macwilliams F. J., 1977, THEORY ERROR CORRECT
[9]   SELF-DUAL CODES OVER GF(4) [J].
MACWILLIAMS, FJ ;
ODLYZKO, AM ;
SLOANE, NJA ;
WARD, HN .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (03) :288-318
[10]  
Peterson W.W., 1961, ERROR CORRECTING COD