Manipulation-Resistant Recommender Systems through Influence Limits

被引:0
|
作者
Resnick, Paul [1 ]
Sami, Rahul [1 ]
机构
[1] Univ Michigan, Sch Informat, Ann Arbor, MI 48109 USA
关键词
Algorithms; Reliability; Recommender systems; manipulation-resistance; shilling; informationloss;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页数:4
相关论文
共 45 条
  • [1] The Influence Limiter: Provably Manipulation-Resistant Recommender Systems
    Resnick, Paul
    Sami, Rahul
    RECSYS 07: PROCEEDINGS OF THE 2007 ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2007, : 25 - 32
  • [2] Understanding the Manipulation on Recommender Systems through Web Injection
    Zhang, Yubao
    Xiao, Jidong
    Hao, Shuai
    Wang, Haining
    Zhu, Sencun
    Jajodia, Sushil
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 (3807-3818) : 3807 - 3818
  • [3] The Information Cost of Manipulation-Resistance in Recommender Systems
    Resnick, Paul
    Sami, Rahul
    RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2008, : 147 - 154
  • [4] Influence level-based Sybil Attack Resistant Recommender Systems
    Noh, Giseop
    Oh, Hayoung
    2014 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING (BDCLOUD), 2014, : 524 - 531
  • [5] Method for Detecting Manipulation Attacks on Recommender Systems with Collaborative Filtering
    Dakhnovich, A. D.
    Zagalsky, D. S.
    Solovey, R. S.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2023, 57 (08) : 868 - 874
  • [6] Method for Detecting Manipulation Attacks on Recommender Systems with Collaborative Filtering
    A. D. Dakhnovich
    D. S. Zagalsky
    R. S. Solovey
    Automatic Control and Computer Sciences, 2023, 57 : 868 - 874
  • [7] Providing reliability in recommender systems through Bernoulli Matrix Factorization
    Ortega, Fernando
    Lara-Cabrera, Raul
    Gonzalez-Prieto, Angel
    Bobadilla, Jesus
    INFORMATION SCIENCES, 2021, 553 : 110 - 128
  • [8] Providing prediction reliability through deep neural networks for recommender systems
    Deng, Jiangzhou
    Li, Hongtao
    Guo, Junpeng
    Zhang, Leo Yu
    Wang, Yong
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 185
  • [9] Improving Recommender Systems Through the Automation of Design Decisions
    Wegmeth, Lukas
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 1332 - 1338
  • [10] Improving accountability in recommender systems research through reproducibility
    Alejandro Bellogín
    Alan Said
    User Modeling and User-Adapted Interaction, 2021, 31 : 941 - 977