MAPK transgenic circuit to improve plant stress-tolerance?

被引:8
|
作者
Moustafa, Khaled [1 ]
机构
[1] INSERM, Creteil, France
关键词
MAP kinase; MAPK transgenic circuit; mitogen activated protein kinase;
D O I
10.4161/15592316.2014.970101
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Thanks to their distinctive mode of action in a coordinated switch-like way, their multi-tiered signaling cascades and their involvement in cell responses to multiple internal and external stimuli, MAP kinases offer a remarkable possibility to be assembled into what we can call "MAPK transgenic circuits" to improve cell functions. Such circuit could be used to enhance cell signaling efficiency and boost cell functions for several purposes in plant biotechnology, medicine, and pharmaceutical industry.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Transgenic approaches to improve quality and abiotic stress tolerance in forage crops.
    Wang, Zeng-Yu
    Cheng, Xiaofei
    Ma, Xuefeng
    Zhang, Jiyi
    Bell, Jeremey
    Ge, Yaxin
    Wright, Elane
    Xi, Yajun
    Xiao, Xirong
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2007, 43 : S18 - S18
  • [22] TMT-Based Comparative Peptidomics Analysis of Rice Seedlings under Salt Stress: An Accessible Method to Explore Plant Stress-Tolerance Processing
    Ma, Wanlu
    Zhang, Chenchen
    Zhang, Wei
    Sheng, Pijie
    Xu, Minyan
    Ni, Ying
    Chen, Meng
    Cheng, Beijiu
    Zhang, Xin
    JOURNAL OF PROTEOME RESEARCH, 2022, 21 (12) : 2905 - 2919
  • [23] Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance
    Shima, Jun
    Takagi, Hiroshi
    BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2009, 53 : 155 - 164
  • [24] Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH
    Xurong Yao
    Peng Liu
    Bo Chen
    Xiaoyan Wang
    Fei Tao
    Zhanglin Lin
    Xiaofeng Yang
    Microbial Cell Factories, 21
  • [25] Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH
    Yao, Xurong
    Liu, Peng
    Chen, Bo
    Wang, Xiaoyan
    Tao, Fei
    Lin, Zhanglin
    Yang, Xiaofeng
    MICROBIAL CELL FACTORIES, 2022, 21 (01)
  • [26] Trends in Plant Breeding and Seed Production to Improve Abiotic Stress Tolerance
    Pazderu, Katerina
    Blaha, Ladislav
    SEED AND SEEDLINGS XI, 2013, : 29 - 33
  • [27] Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance
    Riibak, Kersti
    Reitalu, Triin
    Tamme, Riin
    Helm, Aveliina
    Gerhold, Pille
    Znamenskiy, Sergey
    Bengtsson, Karin
    Rosen, Ejvind
    Prentice, Honor C.
    Paertel, Meelis
    ECOGRAPHY, 2015, 38 (07) : 713 - 721
  • [28] Stress-Tolerance of Sinorhizobium spp. Nodulating Sesbania and Cowpea in Desert Soils
    Balasubramani, Madhumitha
    Kumar, Jyotsna Lakshmi
    Rao, Nanduri Kameswara
    Sood, Neeru
    Gokhale, Trupti
    Rajeswari, Somasundaram
    Fraj, Makram Belhaj
    Mishra, Sanjeet
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2014, 8 (01): : 323 - 331
  • [29] Development of an in vitro multiplication method of sugarcane transgenic lines to improve stress tolerance screening
    Risco, M. D. Molina
    Molina, M. F.
    Dickman, M. B.
    PHYTOPATHOLOGY, 2011, 101 (06) : S122 - S123
  • [30] Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa
    Baduel, Pierre
    Arnold, Brian
    Weisman, Cara M.
    Hunter, Ben
    Bomblies, Kirsten
    PLANT PHYSIOLOGY, 2016, 171 (01) : 437 - 451