An efficient approach to categorising association rules

被引:5
作者
Won, Dongwoo [1 ]
McLeod, Dennis [1 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Dept Comp Sci, Semant Informat Res Lab, Los Angeles, CA 90089 USA
关键词
association rules; categorisation; data mining; market basket data; ontologies; relevance;
D O I
10.1504/IJDMMM.2012.049881
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Association rules are a fundamental data mining technique, used for various applications. In this paper, we present an efficient method to make use of association rules for discovering knowledge from transactional data. First, we approach this problem using an ontology. The hierarchical structure of an ontology defines the generalisation relationship for the concepts of different abstraction levels that are utilised to minimise the search space. Next, we have developed an efficient algorithm, hierarchical association rule categorisation (HARC), which use a novel metric called relevance for categorising association rules. As a result, users are now able to find the needed rules efficiently by searching the compact generalised rules first and then the specific rules that belong to them rather than scanning the entire list of rules.
引用
收藏
页码:309 / 333
页数:25
相关论文
共 39 条
[1]  
Agarwal R., 1994, P 20 INT C VER LARG, P487
[2]  
Aggarwal CC, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P407, DOI 10.1145/304181.304218
[3]  
Agrawal R., 1998, SIGMOD Record, V27, P94, DOI 10.1145/276305.276314
[4]  
Agrawal R., 1993, P ACM SIGMOD C MAN D, P207, DOI DOI 10.1145/170035.170072
[5]  
An AJ, 2003, THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P477
[6]  
[Anonymous], 2006, P 1 ANN SEERC DOCT S
[7]  
Breaux T.D., 2005, P 38 ANN HAW INT C, P111
[8]  
Brin S., 1997, SIGMOD Record, V26, P255, DOI [10.1145/253262.253327, 10.1145/253262.253325]
[9]  
Calvanese Diego, 2001, P 1 SEM WEB WORK S, P303
[10]  
Chen XM, 2003, LECT NOTES COMPUT SC, V2737, P320