Electrochemical Performance Measurements of PBI-Based High-Temperature PEMFCs

被引:9
作者
Parrondo, Javier [1 ]
Rao, Chitturi Venkateswara [1 ]
Ghatty, Sundara L. [1 ]
Rambabu, B. [1 ]
机构
[1] Southern Univ A&M Coll, Dept Phys, Solid State Ion & Surface Sci Lab, Baton Rouge, LA 70813 USA
关键词
D O I
10.4061/2011/261065
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Acid-doped poly(2,2'-m-phenylene-5,5'-bibenzimidazole) membranes have been prepared and used to assemble membrane electrode assemblies (MEAs) with various contents of PBI (1-30wt.%) in the gas diffusion electrode (GDE). The MEAs were tested in the temperature range of 140 degrees C-200 degrees C showing that the PBI content in the electrocatalyst layer influences strongly the electrochemical performance of the fuel cell. The MEAs were assembled using polyphosphoric acid doped PBI membranes having conductivities of 0.1 S cm(-1) at 180 degrees C. The ionic resistance of the cathode decreased from 0.29 to 0.14 Ohm-cm(2) (180 degrees C) when the content of PBI is varied from 1 to 10wt.%. Similarly, the mass transfer resistance or Warburg impedance increased 2.5 times, reaching values of 6Ohm-cm(2). 5wt.% PBI-based MEA showed the best performance. The electrochemical impedance measurements were in good agreement with the fuel cell polarization curves obtained, and the optimumperformance was obtained when overall resistance was minimal.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Simple and robust external reference electrodes for high-temperature electrochemical measurements [J].
Bosch, RW ;
Bogaerts, WF ;
Zheng, JH .
CORROSION, 2003, 59 (02) :162-171
[42]   Electrochemical Hydrogen Separation from Reformate Using High-Temperature Polybenzimidazole (PBI) Membranes: The Role of Chemistry [J].
Huang, Fei ;
Pingitore, Andrew T. ;
Benicewicz, Brian C. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (16) :6234-6242
[43]   High-temperature electrochemical hydrogen separation from reformate gases using PBI/MOF composite membrane [J].
Durmus, Gizem Nur Bulanik ;
Eren, Enis Oguzhan ;
Devrim, Yilser ;
Colpan, C. Ozgur ;
Ozkan, Necati .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (60) :23044-23054
[44]   Performance assessment of anion exchange electrolyzer with PBI-BASED membrane through 0-D modeling [J].
Celebi, Ceren ;
Colpan, C. Ozgur ;
Devrim, Yilser .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 143 :1295-1306
[45]   Reticulated polyaniline nanowires as a cathode microporous layer for high-temperature PEMFCs [J].
Fu, Xudong ;
Li, Tao ;
Tang, Luqing ;
Deng, Xin ;
Zhang, Rong ;
Hu, Shengfei ;
Zhao, Feng ;
Li, Xiao ;
Liu, Qingting .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (12) :8802-8809
[46]   Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount [J].
Javier Pinar, F. ;
Canizares, Pablo ;
Rodrigo, Manuel A. ;
Ubeda, Diego ;
Lobato, Justo .
RSC ADVANCES, 2012, 2 (04) :1547-1556
[47]   DIAGRAMS FOR HIGH-TEMPERATURE MEASUREMENTS [J].
VEROSH, T ;
PETKOV, AP ;
KLUGE, K ;
KERNEI, I .
HIGH TEMPERATURE, 1968, 6 (02) :227-&
[48]   MANUFACTURING TECHNOLOGY IN HIGH-TEMPERATURE PBI PLASTIC RADOME STRUCTURE [J].
CHASE, VA .
WESTERN PLASTICS, 1969, 16 (04) :45-&
[49]   A review of high-temperature electrochemical sensors based on stabilized zirconia [J].
Liu, Tao ;
Zhang, Xiaofang ;
Yuan, Lei ;
Yu, Jingkun .
SOLID STATE IONICS, 2015, 283 :91-102
[50]   Ethanol oxidation on a high temperature PBI-based DEFC using Pt/C, PtRu/C and Pt3Sn/C as catalysts [J].
José J. Linares ;
Sabrina C. Zignani ;
Thairo A. Rocha ;
Ernesto R. Gonzalez .
Journal of Applied Electrochemistry, 2013, 43 :147-158