Reductive group actions on affine varieties and their doubling

被引:5
作者
Panyushev, DI
机构
关键词
reductive groups; group actions; algebra of invariants; spherical variety;
D O I
10.5802/aif.1479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study G-actions of the form (G : X x X*), where X* is the dual (to X) G-variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action (G : X) is given. It is shown that the doubled actions have a number of nice properties, if X is spherical or of complexity one.
引用
收藏
页码:929 / &
页数:23
相关论文
共 20 条
[1]   INVARIANTS OF A MAXIMAL UNIPOTENT SUBGROUP OF A SEMISIMPLE GROUP [J].
BRION, M .
ANNALES DE L INSTITUT FOURIER, 1983, 33 (01) :1-27
[2]   PICARD GROUP AND EIGENVALUES OF SPHERICAL MANIFOLDS [J].
BRION, M .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) :397-424
[3]  
HOWE R, PROJECTIVE INVARIANT
[4]   ORBITS AND REPRESENTATIONS ASSOCIATED WITH SYMMETRIC SPACES [J].
KOSTANT, B ;
RALLIS, S .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (03) :753-&
[5]   ON SPHERICAL DOUBLE CONES [J].
LITTELMANN, P .
JOURNAL OF ALGEBRA, 1994, 166 (01) :142-157
[6]   GENERALIZATION OF THE CHEVALLEY RESTRICTION THEOREM [J].
LUNA, D ;
RICHARDSON, RW .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (03) :487-496
[7]   ORBITAL ADHERENCES AND INVARIANTS [J].
LUNA, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :231-238
[8]  
PANYUSHEV D, 1995, MATH ANN, V31, P655
[9]  
PANYUSHEV D, 1995, J LIE THEORY, V5
[10]  
PANYUSHEV D, 1994, UNPUB MATH, V83, P223