Functional connectivity in relation to motor performance and recovery after stroke

被引:101
作者
Westlake, Kelly P. [1 ]
Nagarajan, Srikantan S. [1 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, Biomagnet Imaging Lab, 513 Parnassus Ave Suite S362,Box 0628, San Francisco, CA 94143 USA
基金
加拿大健康研究院;
关键词
stroke; functional connectivity; brain; recovery of function; neuroimaging; neuroplasticity;
D O I
10.3389/fnsys.2011.00008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Plasticity after stroke has traditionally been studied by observing changes only in the spatial distribution and laterality of focal brain activation during affected limb movement. However, neural reorganization is multifaceted and our understanding may be enhanced by examining dynamics of activity within large-scale networks involved in sensorimotor control of the limbs. Here, we review functional connectivity as a promising means of assessing the consequences of a stroke lesion on the transfer of activity within large-scale neural networks. We first provide a brief overview of techniques used to assess functional connectivity in subjects with stroke. Next, we review task-related and resting-state functional connectivity studies that demonstrate a lesion-induced disruption of neural networks, the relationship of the extent of this disruption with motor performance, and the potential for network reorganization in the presence of a stroke lesion. We conclude with suggestions for future research and theories that may enhance the interpretation of changing functional connectivity. Overall findings suggest that a network level assessment provides a useful framework to examine brain reorganization and to potentially better predict behavioral outcomes following stroke.
引用
收藏
页数:12
相关论文
共 72 条
[1]   Modeling the Impact of Lesions in the Human Brain [J].
Alstott, Jeffrey ;
Breakspear, Michael ;
Hagmann, Patric ;
Cammoun, Leila ;
Sporns, Olaf .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (06)
[2]   Disturbed functional connectivity in brain tumour patients: Evaluation by graph analysis of synchronization matrices [J].
Bartolomei, Fabrice ;
Bosma, Ingeborg ;
Klein, Martin ;
Baayen, Johannes C. ;
Reijneveld, Jaap C. ;
Postma, Tjeerd J. ;
Heimans, Jan J. ;
van Dijk, Bob W. ;
de Munck, Jan C. ;
de Jongh, Arent ;
Cover, Keith S. ;
Stam, Cornelis J. .
CLINICAL NEUROPHYSIOLOGY, 2006, 117 (09) :2039-2049
[3]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[4]   Probabilistic streamline q-ball tractography using the residual bootstrap [J].
Bermnan, Jeffrey I. ;
Chung, SungWon ;
Mukherjee, Pratik ;
Hess, Christopher P. ;
Han, Eric T. ;
Henry, Roland G. .
NEUROIMAGE, 2008, 39 (01) :215-222
[5]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[6]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[7]   Sequential activation brain mapping after subcortical stroked:: changes in hemispheric balance and recovery [J].
Calautti, C ;
Leroy, F ;
Guincestre, JY ;
Marié, RM ;
Baron, JC .
NEUROREPORT, 2001, 12 (18) :3883-3886
[8]   The relationship between motor deficit and hemisphere activation balance after stroke: A 3T fMRI study [J].
Calautti, Cinzia ;
Naccarato, Mareello ;
Jones, Peter S. ;
Sharma, Nikhil ;
Day, Diana D. ;
Carpenter, Adrian T. ;
Bullmore, Edward T. ;
Warburton, Elizabeth A. ;
Baron, Jean-Claude .
NEUROIMAGE, 2007, 34 (01) :322-331
[9]   Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 13 (01) :43-53
[10]   Resting Interhemispheric Functional Magnetic Resonance Imaging Connectivity Predicts Performance after Stroke [J].
Carter, Alex R. ;
Astafiev, Serguei V. ;
Lang, Catherine E. ;
Connor, Lisa T. ;
Rengachary, Jennifer ;
Strube, Michael J. ;
Pope, Daniel L. W. ;
Shulman, Gordon L. ;
Corbetta, Maurizio .
ANNALS OF NEUROLOGY, 2010, 67 (03) :365-375