SUPERCONVERGENCE ANALYSIS AND ERROR EXPANSION FOR THE WILSON NONCONFORMING FINITE-ELEMENT

被引:47
作者
CHEN, HS
LI, B
机构
[1] UNIV HEIDELBERG,INST ANGEW MATH,D-69120 HEIDELBERG,GERMANY
[2] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
D O I
10.1007/s002110050084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the Wilson nonconforming finite element is considered for solving a class of two-dimensional second-order elliptic boundary value problems. Superconvergence estimates and error expansions are obtained for both uniform and non-uniform rectangular meshes. A new lower bound of the error shows that the usual error estimates are optimal. Finally a discussion on the error behaviour in negative norms shows that there is generally no improvement in the order by going to weaker norms.
引用
收藏
页码:125 / 140
页数:16
相关论文
共 18 条
  • [1] ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS
    BLUM, H
    LIN, Q
    RANNACHER, R
    [J]. NUMERISCHE MATHEMATIK, 1986, 49 (01) : 11 - 37
  • [2] BLUM H, 1990, THESIS U HEIDELBERG
  • [3] CHEN H, 1989, NATUR SCI J XIANGTAN, V11, P1
  • [4] Chen Hongsen, 1992, Systems Science and Mathematical Science, V5, P127
  • [5] Ciarlet P. G., 2002, FINITE ELEMENT METHO
  • [6] FREHSE J, 1979, BONN MATH SCHR, V89, P92
  • [7] ON SUPERCONVERGENCE TECHNIQUES
    KRIZEK, M
    NEITTAANMAKI, P
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (03) : 175 - 198
  • [8] CONVERGENCE OF THE NONCONFORMING WILSON ELEMENT FOR ARBITRARY QUADRILATERAL MESHES
    LESAINT, P
    ZLAMAL, M
    [J]. NUMERISCHE MATHEMATIK, 1980, 36 (01) : 33 - 52
  • [9] Li B., 1990, CHINESE J NUMER MATH, V12, P75
  • [10] LIN Q, 1991, NUMER MATH, V58, P631