SUPERCONVERGENCE ANALYSIS AND ERROR EXPANSION FOR THE WILSON NONCONFORMING FINITE-ELEMENT

被引:49
作者
CHEN, HS
LI, B
机构
[1] UNIV HEIDELBERG,INST ANGEW MATH,D-69120 HEIDELBERG,GERMANY
[2] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
D O I
10.1007/s002110050084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the Wilson nonconforming finite element is considered for solving a class of two-dimensional second-order elliptic boundary value problems. Superconvergence estimates and error expansions are obtained for both uniform and non-uniform rectangular meshes. A new lower bound of the error shows that the usual error estimates are optimal. Finally a discussion on the error behaviour in negative norms shows that there is generally no improvement in the order by going to weaker norms.
引用
收藏
页码:125 / 140
页数:16
相关论文
共 18 条
[1]   ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS [J].
BLUM, H ;
LIN, Q ;
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :11-37
[2]  
BLUM H, 1990, THESIS U HEIDELBERG
[3]  
CHEN H, 1989, NATUR SCI J XIANGTAN, V11, P1
[4]  
Chen Hongsen, 1992, Systems Science and Mathematical Science, V5, P127
[5]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[6]  
FREHSE J, 1979, BONN MATH SCHR, V89, P92
[7]   ON SUPERCONVERGENCE TECHNIQUES [J].
KRIZEK, M ;
NEITTAANMAKI, P .
ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (03) :175-198
[8]   CONVERGENCE OF THE NONCONFORMING WILSON ELEMENT FOR ARBITRARY QUADRILATERAL MESHES [J].
LESAINT, P ;
ZLAMAL, M .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :33-52
[9]  
Li B., 1990, CHINESE J NUMER MATH, V12, P75
[10]  
LIN Q, 1991, NUMER MATH, V58, P631