Representable tolerances in varieties

被引:0
作者
Lipparini, Paolo [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Novello Matemat, Viale Ric Sci, I-00133 Rome, Italy
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2013年 / 79卷 / 1-2期
关键词
tolerance; representable; image of a congruence; lattice (quasi-) variety;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss two possible ways of representing tolerances: first, as a homomorphic image of some congruence; second, as the relational composition of some compatible relation with its converse. The second way is independent from the variety under consideration, while the first way is variety-dependent. The relationships between these two kinds of representations are clarified. As an application, we show that any tolerance on some lattice L is the image of some congruence on a subalgebra of L x L. This is related to recent results by G. Czedli, G. Gratzer and E.W. Kiss.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 30 条
[1]  
Chajda I., 1974, CAS PEST MAT FYS, V99, P394
[2]  
CHAJDA I., 1981, C MATH SOC JAN BOL 2, P69
[3]   Independent joins of tolerance factorable varieties [J].
Chajda, Ivan ;
Czedli, Gabor ;
Halas, Radomir .
ALGEBRA UNIVERSALIS, 2013, 69 (01) :83-92
[4]   Tolerances as images of congruences in varieties defined by linear identities [J].
Chajda, Ivan ;
Czedli, Gabor ;
Halas, Radomir ;
Lipparini, Paolo .
ALGEBRA UNIVERSALIS, 2013, 69 (02) :167-169
[5]   Optimal Mal'tsev conditions for congruence modular varieties [J].
Czédli, G ;
Horváth, EK ;
Lipparini, P .
ALGEBRA UNIVERSALIS, 2005, 53 (2-3) :267-279
[6]   All congruence lattice identities implying modularity have Mal'tsev conditions [J].
Czédli, G ;
Horváth, EK .
ALGEBRA UNIVERSALIS, 2003, 50 (01) :69-74
[7]   On tolerance lattices of algebras in congruence modular varieties [J].
Czédli, G ;
Horváth, EK ;
Radeleczki, S .
ACTA MATHEMATICA HUNGARICA, 2003, 100 (1-2) :9-17
[8]  
CZEDLI G, 1982, ACTA SCI MATH, V44, P35
[9]  
Czedli G., 2002, ACTA U PALACKI OLOMU, V41, P43
[10]  
Czedli G., 2002, ACTA U PALACK OLOMUC, V41, P39