ASYMPTOTIC STABILITY OF THE RELATIVISTIC MAXWELLIAN

被引:76
作者
GLASSEY, RT
STRAUSS, WA
机构
[1] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47405
[2] BROWN UNIV,DEPT MATH,PROVIDENCE,RI 02912
关键词
D O I
10.2977/prims/1195167275
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Solutions of the relativistic Boltzmann equation are studied for all initial data which are periodic in the space variable and near equilibrium. An equilibrium is a relativistic Maxwellian distribution of momenta. Under appropriate conditions on the scattering kernel, this equilibrium is asymptotically stable in a variety of function spaces.
引用
收藏
页码:301 / 347
页数:47
相关论文
共 24 条
[1]  
BARDOS C, 1984 P AMS SIAM SUMM
[2]  
Bellomo N., 1989, Transport Theory and Statistical Physics, V18, P87, DOI 10.1080/00411458908214500
[3]   On the theory of Botzmann's integrodifferential equation [J].
Carleman, T .
ACTA MATHEMATICA, 1933, 60 (01) :91-146
[4]  
CARLEMAN T, 1957, PROBLEMES MATH THEOR
[5]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[6]  
CEREGNANI C, 1985, PHYS FLUIDS, V28, P1673
[7]  
de Groot S.R., 1980, RELATIVISTIC KINETIC
[8]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[9]   ON THE LINEARIZED RELATIVISTIC BOLTZMANN-EQUATION .1. EXISTENCE OF SOLUTIONS [J].
DUDYNSKI, M ;
EKIELJEZEWSKA, ML .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (04) :607-629
[10]  
Glass R. T., 1991, Transport Theory and Statistical Physics, V20, P55, DOI 10.1080/00411459108204708