J-TYPE MAPPINGS AND FIXED POINT THEOREMS IN MENGER SPACES

被引:1
作者
Feizi, E. [1 ]
Hosseini, Z. [1 ]
机构
[1] Bu Ali Sina Univ, Fac Sci, Dept Math, Hamadan, Iran
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2014年 / 8卷 / 03期
关键词
Fixed point; Menger space; J-type mapping; Altering J-type mapping;
D O I
10.22436/jmcs.08.03.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
J. Garcia-Falset, E. Llorens-Fuster and S. Prus in [2] studied the existence of fixed point of J-type mappings in Banach spaces. In this paper, we extend these mappings in Menger spaces and prove the fixed point theorems of these mappings in complete Menger spaces. In this paper, we also prove theorems for the new class of mappings which is called altering J-type.
引用
收藏
页码:245 / 250
页数:6
相关论文
共 13 条
[1]   A coincidence point result in Menger spaces using a control function [J].
Choudhury, Binayak S. ;
Das, Krishnapada .
CHAOS SOLITONS & FRACTALS, 2009, 42 (05) :3058-3063
[2]   Common fixed point theorems under strict contractive conditions in Menger spaces [J].
Fang, Jin-xuan ;
Gao, Yang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :184-193
[3]   Common fixed point theorems of compatible and weakly compatible maps in Menger spaces [J].
Fang, Jin-Xuan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1833-1843
[4]   The fixed point property for mappings admitting a center [J].
Garcia-Falset, J. ;
Llorens-Fuster, E. ;
Prus, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (06) :1257-1274
[5]  
GOEBEL K, 2001, HDB METRIC FIXED POI
[6]  
Imdad M., 2009, SOLITONS FRACTALS, V42, P1321
[7]   Statistical metrics [J].
Menger, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1942, 28 :535-537
[8]  
Morales Jose R., 2012, MATH COMPUTER SCI
[9]   Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces [J].
Mustafa, Zead ;
Aydi, Hassen ;
Karapinar, Erdal .
FIXED POINT THEORY AND APPLICATIONS, 2012, :1-19
[10]  
Pant B. D., 2011, FIXED POINT THEOREM, V7, P9