POSITIVE SOLUTION OF CRITICAL HARDY-SOBOLEV ELLIPTIC SYSTEMS WITH THE BOUNDARY SINGULARITY

被引:0
作者
Yang, Jianfu [1 ]
Zhou, Yimin [1 ]
机构
[1] Jiangxi Normal Univ Nanchang, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2013年 / 5卷 / 02期
关键词
existence; positive solution; critical Hardy-Sobolev exponent; nonlinear system;
D O I
10.7153/dea-05-16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of positive solutions to the system { -Delta u = 2p/p+q u(p-1) v(q) + 2 lambda alpha/alpha+beta u(alpha-1) v(beta)/vertical bar x vertical bar(s) , in Omega -Delta v = 2q/p+q u(p) v(q-1) + 2 lambda alpha/alpha+beta u(alpha) v(beta-1)/vertical bar x vertical bar(s) , in Omega (0.1) u > 0, v > 0, in Omega u = v = 0, on partial derivative Omega, where Omega is a C-2 domain in R-N with 0 epsilon partial derivative Omega, 0 < s < 2, lambda >0, p + q =2* = 2N/N-2, alpha + beta = 2*(s) = 2(N s)/N-2, N >= 3. We show that if Omega = R-+(N), problem (0.1) possesses a least energy solution and if Omega is bounded, 0 epsilon partial derivative Omega, there exists lambda* > 0 such that problem (0.1) has at least a positive solution provided 0 < lambda < lambda*.
引用
收藏
页码:249 / 269
页数:21
相关论文
共 11 条
[1]   On systems of elliptic equations involving subcritical or critical Sobolev exponents [J].
Alves, CO ;
de Morais, DC ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :771-787
[2]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[3]  
Ding L, 2010, DIFFER EQUAT APPL, V2, P227
[4]   POSITIVE SOLUTIONS OF SEMILINEAR EQUATIONS IN CONES [J].
EGNELL, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (01) :191-201
[5]   Hardy-Sobolev critical elliptic equations with boundary singularities [J].
Ghoussoub, N ;
Kang, XS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (06) :767-793
[6]   The effect of curvature on the best constant in the Hardy-Sobolev inequalities [J].
Ghoussoub, N. ;
Robert, F. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (06) :1201-1245
[7]  
Ghoussoub N, 2006, INT MATH RES PAP
[8]   ELLIPTIC EQUATIONS WITH CRITICAL GROWTH AND A LARGE SET OF BOUNDARY SINGULARITIES [J].
Ghoussoub, Nassif ;
Robert, Frederic .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) :4843-4870
[9]   Revisiting an idea of Brezis and Nirenberg [J].
Hsia, Chun-Hsiung ;
Lin, Chang-Shou ;
Wadade, Hidemitsu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (07) :1816-1849
[10]  
LIN C.-C., 2011, PREPRINT