ANALYSIS OF A COUPLED COPLANAR WAVE-GUIDE FOR MMIC APPLICATIONS

被引:2
作者
ZHU, NH
QIU, W
PUN, EYB
CHUNG, PS
机构
[1] Department of Electronic Engineering, City University of Hong Kong, Kowloon
关键词
MMIC; COPLANAR WAVE-GUIDE; POINT MATCHING; CONFORMAL MAPPING;
D O I
10.1002/mop.4650100316
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The article presents a computational method for calculating the electric potential and field distributions in a coupled coplanar waveguide with finite electrode thickness. This method provides a simple and fast approach to the quasistatic analysis of the structures. The same structure with infinitely thin electrodes is also analyzed using conformal-mapping techniques, and excellent agreement of the results is obtained between the two methods. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:182 / 186
页数:5
相关论文
共 18 条
[1]  
Mernyei F., Aoki I., Matsuura H., New Filter Element for MMICs: Triple Coupled CPW Lines, Electron. Lett., 30, pp. 2150-2151, (1994)
[2]  
Gentili G.G., Macchiarella G., Quasi‐Static Analysis of Shielded Planar Transmission Lines with Finite Metallization Thickness by a Mixed Spectral‐Space Domain Method, IEEE Trans. Microwave Theory Tech., 42 MTT, pp. 249-255, (1994)
[3]  
Jin H., Vahldieck R., Belanger M., Jacubczyk Z., A Mode Projecting Method for the Quasi‐Static Analysis of Electrooptic Device Electrodes Considering Finite Metallization Thickness and Anisotropic Substrate, IEEE J. Quantum Electron., 27 QE, pp. 2306-2314, (1991)
[4]  
Jin H., Belanger M., Jacubczyk Z., General Analysis of Electrodes in Integrated‐Optics Electrooptic Devices, IEEE J. Quantum Electron., 27 QE, pp. 243-251, (1991)
[5]  
Heinrich W., Quasi‐TEM Description of MMIC Coplanar Lines Including Conductor‐Loss Effects, IEEE Trans. Microwave Theory Tech., 41 MTT, pp. 45-52, (1993)
[6]  
Green H.E., The Numerical Solution of Some Important Transmission Line Problems, IEEE Transactions on Microwave Theory and Techniques, 13 MTT, (1965)
[7]  
Pantic Z., Mittra R., Quasi‐TEM Analysis of Microwave Transmission Lines by the Finite‐Element Method, IEEE Trans. Microwave Theory Tech., 34 MTT, pp. 1096-1103, (1986)
[8]  
Khebir A., Kouki A., Mittra R., High‐Order Asymptotic Boundary Condition for the Finite Element Modeling of Two‐Dimensional Transmission Line Structures, IEEE Trans. Microwave Theory Tech., 38 MTT, pp. 1433-1437, (1990)
[9]  
Kawano K., Noguchi K., Kitoh T., Miyazawa H., A Finite Element Method (FEM) Analysis of a Shielded Velocity‐Matched Ti:LiNbO<sub>3</sub> Optical Modulator, IEEE Photonics Technology Letters, pp. 919-921, (1991)
[10]  
Honma T., Fukai I., An Analysis for the Equivalence of Boxed and Shielded Strip Lines by a Boundary Element Method, Trans. IECE Jpn., 65 BJ, pp. 497-498, (1982)