ASYMPTOTIC EXPANSIONS OF INVARIANT METRICS OF STRICTLY PSEUDOCONVEX DOMAINS

被引:13
|
作者
FU, SQ [1 ]
机构
[1] WASHINGTON UNIV,DEPT MATH,ST LOUIS,MO 63130
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1995年 / 38卷 / 02期
关键词
D O I
10.4153/CMB-1995-028-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain the asymptotic expansions of the Caratheodory and Kobayashi metrics of strictly pseudoconvex domains with C(infinity) smooth boundaries in C(n). The main result of this paper can be stated as following: Main Theorem. Let OMEGA be a strictly pseudoconvex domain with C(infinity) smooth boundary. Let F(OMEGA)(z, X) be either the Caratheodory or the Kobayashi metric of OMEGA. Let delta(z) be the signed distance from z to partial derivativeOMEGA with delta(z) < 0 for z is-an-element-of OMEGA and delta(z) greater-than-or-equal-to 0 for z is-not-an-element-of OMEGA. Then there exist a neighborhood U of partial derivativeOMEGA, a constant C > 0, and a continuous function C(z,X):(U and OMEGA) x C(n) --> R such that [GRAPHICS] and \C(z,X)\ less-than-or-equal-to C\X\ for z is-an-element-of U and OMEGA and X is-an-element-of C(n).
引用
收藏
页码:196 / 206
页数:11
相关论文
共 50 条