ON THE GROWTH OF SOLUTIONS OF CERTAIN LINEAR-DIFFERENTIAL EQUATIONS

被引:17
作者
HELLERSTEIN, S
MILES, J
ROSSI, J
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[2] UNIV ILLINOIS,DEPT MATH,URBANA,IL 61801
[3] VIRGINIA POLYTECH INST & STATE UNIV,DEPT MATH,BLACKSBURG,VA 24061
来源
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA | 1992年 / 17卷 / 02期
关键词
D O I
10.5186/aasfm.1992.1723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose g(j), 0 less-than-or-equal-to j less-than-or-equal-to n - 1, and h are entire functions and that for some k, 0 less-than-or-equal-to k less-than-or-equal-to n - 1/2, the order of g(k) does not exceed 1/2 and does exceed the order of h and the order of all other g(j) . It is shown that then every solution of the differential equation [GRAPHICS] is either a polynomial or an entire function of infinite order. This generalizes a previous result of the authors for second order equations.
引用
收藏
页码:343 / 365
页数:23
相关论文
共 14 条
[1]  
BARRY P, 1970, P LOND MATH SOC, V21, P33
[2]   ON A THEOREM OF BESICOVITCH [J].
BARRY, PD .
QUARTERLY JOURNAL OF MATHEMATICS, 1963, 14 (56) :293-&
[3]   POLYA PEAKS AND OSCILLATION OF POSITIVE FUNCTIONS [J].
DRASIN, D ;
SHEA, DF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 34 (02) :403-&
[4]  
FUCHS W, 1963, J MATH, V7, P661
[5]   ESTIMATES FOR THE LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION, PLUS SIMILAR ESTIMATES [J].
GUNDERSEN, GG .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 :88-104
[6]  
Hayman W. K., 1964, MEROMORPHIC FUNCTION
[7]   REAL INEQUALITIES WITH APPLICATIONS TO FUNCTION THEORY [J].
HAYMAN, WK ;
STEWART, FM .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1954, 50 (02) :250-260
[8]   CHARACTERISTIC, MAXIMUM MODULUS AND VALUE DISTRIBUTION [J].
HAYMAN, WK ;
ROSSI, JF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :651-664
[9]  
Hayman WK., 1989, COMPLEX VARIABLES, V12, P245
[10]   ON THE GROWTH OF SOLUTIONS OF F'' + GF' + HF = 0 [J].
HELLERSTEIN, S ;
MILES, J ;
ROSSI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (02) :693-706