A NONCOMMUTATIVE RANDOM STOPPING THEOREM

被引:8
作者
BARNETT, C
THAKRAR, B
机构
[1] Department of Mathematics, Imperial College, London
关键词
D O I
10.1016/0022-1236(90)90109-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theory of non-commutative stopping time is presented in the case where the underlying Von Neumann algebra possesses only a faithful normal state. In particular we prove an analogue of Doob's optional stopping theorem and in the special case of the quasi-free representation of the CAR we are also able to prove the random stopping theorem. These results thus extend those established by C. Barnett and T. J. Lyons (1985, Math. Proc. Cambridge Philos. Soc.) to include certain type III factors. © 1990.
引用
收藏
页码:342 / 350
页数:9
相关论文
共 7 条
[1]  
BARNETT C, 1981, J LOND MATH SOC, V24, P175
[2]   QUASI-FREE QUANTUM STOCHASTIC INTEGRALS FOR THE CAR AND CCR [J].
BARNETT, C ;
STREATER, RF ;
WILDE, IF .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 52 (01) :19-47
[3]  
BARNETT C, 1985, MATH P CAMBRIDGE PHI
[4]  
Dunford N., 1958, LINEAR OPERATORS 1
[5]   COMPLETELY POSITIVE QUASI-FREE MAPS ON THE CAR ALGEBRA [J].
EVANS, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (01) :53-68
[6]   A NON-COMMUTATIVE MARTINGALE REPRESENTATION THEOREM FOR NON-FOCK QUANTUM BROWNIAN-MOTION [J].
HUDSON, RL ;
LINDSAY, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 61 (02) :202-221
[7]  
LINDSAY JM, IN PRESS Z WAHRSCH V