Chaos and fundamental bifurcation phenomena from a relaxation oscillator with periodic thresholds

被引:2
作者
Kohari, K [1 ]
Saito, T [1 ]
Kawakami, H [1 ]
机构
[1] UNIV TOKUSHIMA,FAC ENGN,TOKUSHIMA 770,JAPAN
来源
ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE | 1995年 / 78卷 / 07期
关键词
relaxation oscillator; piecewise-linear system; synchronization; chaos; coexistence of attractors;
D O I
10.1002/ecjc.4430780709
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A relaxation oscillator which includes a hysteresis element with periodic variation of the threshold is analyzed. Deriving a one-dimensional return map, the parameter regions are clarified where the system exhibits a periodic solution or quasi-periodic solutions and where the response characteristics of the system having periodic solutions becomes devil's stair and where the attractors may coexist. When the system has chaotic response, then coexistence of chaotic and periodic attractors is confirmed. Various results are confirmed from the laboratory experiments.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 9 条
[1]   TIMING OF HUMAN SLEEP - RECOVERY PROCESS GATED BY A CIRCADIAN PACEMAKER [J].
DAAN, S ;
BEERSMA, DGM ;
BORBELY, AA .
AMERICAN JOURNAL OF PHYSIOLOGY, 1984, 246 (02) :R161-R178
[2]  
DOI, 1993, IEICE CAS9291 TECH R
[3]   SIMPLE-MODEL FOR PHASE LOCKING OF BIOLOGICAL OSCILLATORS [J].
GLASS, L ;
MACKEY, MC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1979, 7 (04) :339-352
[4]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[5]   CHAOTIC BEHAVIOR IN PIECEWISE CONTINUOUS DIFFERENCE-EQUATIONS [J].
KEENER, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 261 (02) :589-604
[6]  
KOHARI K, 1993, DEC IEICE T FUND E A, V76
[7]  
LOZI R, 1993, P NOLTA 93, P53
[8]  
MINAMIKUMO, 1972, APR T IECE JAP D J, V55, P269
[9]  
NAGATA, 1981, JUL T IECE JAP A J, V64, P566