M-ESTIMATION FOR AUTOREGRESSIONS WITH INFINITE VARIANCE

被引:168
作者
DAVIS, RA
KNIGHT, K
LIU, J
机构
[1] UNIV TORONTO,DEPT STAT,TORONTO M5S 1A1,ONTARIO,CANADA
[2] UNIV BRITISH COLUMBIA,DEPT STAT,VANCOUVER V6T 1W5,BC,CANADA
基金
美国国家科学基金会;
关键词
AR PROCESSES; M-ESTIMATION; LEAST SQUARES ESTIMATION; LEAST ABSOLUTE DEVIATION; STABLE DISTRIBUTION; DOMAIN OF ATTRACTION; POINT PROCESSES;
D O I
10.1016/0304-4149(92)90142-D
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the problem of estimating autoregressive parameters when the observations are from an AR process with innovations in the domain of attraction of a stable law. We show that non-degenerate limit laws exist for M-estimates if the loss function is sufficiently smooth; these results remain valid if location and scale are also estimated. For least absolute deviation (LAD) estimates, similar results hold under conditions on the innovations distribution near 0. We also discuss, under moment conditions on the innovations, consistency properties for M-estimators corresponding to the class of loss functions, rho(x) = \x\gamma for some gamma > 0.
引用
收藏
页码:145 / 180
页数:36
相关论文
共 20 条
[1]   ON CONVERGENCE OF LAD ESTIMATES IN AUTOREGRESSION WITH INFINITE VARIANCE [J].
AN, HZ ;
CHEN, ZG .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (03) :335-345
[2]  
[Anonymous], 1983, LEAST ABSOLUTE DEVIA
[3]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[4]  
Bingham N.H., 1987, REGULAR VARIATION
[5]  
Brockwel P. J., 1987, TIME SERIES THEORY M
[6]  
CLINE D, 1983, THESIS COLARADO STAT
[7]   MORE LIMIT THEORY FOR THE SAMPLE CORRELATION-FUNCTION OF MOVING AVERAGES [J].
DAVIS, R ;
RESNICK, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 20 (02) :257-279
[8]   LIMIT THEORY FOR MOVING AVERAGES OF RANDOM-VARIABLES WITH REGULARLY VARYING TAIL PROBABILITIES [J].
DAVIS, R ;
RESNICK, S .
ANNALS OF PROBABILITY, 1985, 13 (01) :179-195
[9]   LIMIT THEORY FOR THE SAMPLE COVARIANCE AND CORRELATION-FUNCTIONS OF MOVING AVERAGES [J].
DAVIS, R ;
RESNICK, S .
ANNALS OF STATISTICS, 1986, 14 (02) :533-558
[10]  
FELLER W, 1971, INTRO PROIOBABILITY, V2