Von Neumann Normalisation of a Quantum Random Number Generator

被引:5
|
作者
Abbott, Alastair A. [1 ]
Calude, Cristian S. [1 ]
机构
[1] Univ Auckland, Dept Comp Sci, Private Bag 92019, Auckland, New Zealand
来源
COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE | 2012年 / 1卷 / 01期
关键词
quantum random number generator; von Neumann normalisation; un-biasing;
D O I
10.3233/COM-2012-001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study von Neumann un-biasing normalisation for ideal and real quantum random number generators, operating on finite strings or infinite bit sequences. In the ideal cases one can obtain the desired un-biasing. This relies critically on the independence of the source, a notion we rigorously define for our model. In real cases, affected by imperfections in measurement and hardware, one cannot achieve a true un-biasing, but, if the bias "drifts sufficiently slowly", the result can be arbitrarily close to un-biasing. For infinite sequences, normalisation can both increase or decrease the (algorithmic) randomness of the generated sequences. A successful application of von Neumann normalisation-in fact, any un-biasing transformation-does exactly what it promises, un-biasing, one (among infinitely many) symptoms of randomness; it will not produce "true" randomness.
引用
收藏
页码:59 / 83
页数:25
相关论文
共 50 条
  • [21] Practical decoy-state quantum random number generator with weak coherent sources
    Han, Shuo-Shuo
    Ding, Hua-Jian
    Zhang, Chun-Hui
    Zhou, Xing-Yu
    Zhang, Chun-Mei
    Wang, Qin
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [22] Monolithic Silicon Quantum Random Number Generator Based on Measurement of Photon Detection Time
    Khanmohammadi, Abbas
    Enne, Reinhard
    Hofbauer, Michael
    Zimmermanna, Horst
    IEEE PHOTONICS JOURNAL, 2015, 7 (05):
  • [23] QRNG: Side-Channel Resistant Design using Quantum Random Number Generator
    Park, Jungmin
    Cho, Seongjoon
    Lim, Taejin
    Bhunia, Swarup
    Tehranipoor, Mark
    2019 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2019,
  • [24] Combining a quantum random number generator and quantum-resistant algorithms into the GnuGPG open-source software
    Raffaelli, Francesco
    Denman, Robert
    Collins, Richard
    Faugere, Jean-Charles
    De Martino, Gaetano
    Shaw, Charles
    Kennard, Jake
    Sibson, Philip
    Perret, Ludovic
    Erven, Chris
    ADVANCED OPTICAL TECHNOLOGIES, 2020, 9 (05) : 287 - 295
  • [25] 21 Gbps Source-Independent Quantum Random Number Generator Based on Vacuum Fluctuations
    Zhu, Yibo
    Bian, Yiming
    Yang, Jie
    Zhang, Yichen
    Yu, Song
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 2140 - 2142
  • [26] Partial loopholes free device-independent quantum random number generator using IBM's quantum computers
    Yadav, Abhishek
    Mishra, Sandeep
    Pathak, Anirban
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [27] A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure
    Huang, Min
    Chen, Ziyang
    Zhang, Yichen
    Guo, Hong
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [28] Vacuum-based quantum random number generator using multi-mode coherent states
    E. O. Samsonov
    B. E. Pervushin
    A. E. Ivanova
    A. A. Santev
    V. I. Egorov
    S. M. Kynev
    A. V. Gleim
    Quantum Information Processing, 2020, 19
  • [29] Long term experimental verification of a single chip quantum random number generator fabricated on the InP platform
    Themistoklis Chrysostomidis
    Ioannis Roumpos
    David Alvarez Outerelo
    Marcos Troncoso-Costas
    Valentina Moskalenko
    Juan Carlos Garcia-Escartin
    Francisco J. Diaz-Otero
    Konstantinos Vyrsokinos
    EPJ Quantum Technology, 2023, 10
  • [30] Development of a High Min-Entropy Quantum Random Number Generator Based on Amplified Spontaneous Emission
    Duda, Charlotte K.
    Meier, Kristina A.
    Newell, Raymond T.
    ENTROPY, 2023, 25 (05)